Stress Echocardiography Basics

Michael H Picard, M.D.
Massachusetts General Hospital
Harvard Medical School
No disclosures

Stress Echo

- CAD
 - Diagnosis
 - Prognosis
 - Special issues
- Valve disease
 - Exercise induced pulmonary hypertension
- Diastolic function
 - Dyspnea evaluation

Why add an echo to a stress test?

- Addition of any imaging modality to ETT increases accuracy
- Advantages of echo
 - noninvasive, no radiation, portable
 - 20-30 min test; no delayed imaging, rapid results
 - closely spaced, repeated testing is highly feasible
 - beat by beat, stage by stage analysis
 - global and segmental function (resting and stress)
 - relative cost
 - other info obtained - pericardium, valves, chambers, etc.
 * for other sources of chest pain

...
Stress Echo

• Other advantages
 – imaging before during and after stress
 – multiple views of the LV
 – short acquisition times
 – wall motion, myocardial thickening, global function
 – good for patients with high false + rate of ETTs (women, digoxin)
 – Real time assessment

Adding echo to a stress test

• Disadvantages
 – < 100% imaging success rate
 • improving with harmonics, contrast
 – operator dependent
 • sonographer and interpreter
 – learning curve to interpretation (subjective)
 • wall motion during ischemia is subtle and transient
 – subjective interpretation
 • quantitation under development
 – assessing end result of ischemia
 – ? ischemia within region of prior infarct

Rate-pressure product

- Angina
- Ischemic ST segment
- PCW elevation
- Significant perfusion defect
- Regional myocardial dysfunction
- Flow heterogeneity

Stress Time

Modified from Beller, Am J Card 1988;61:2
Appropriate use of stress echo

Douglas et al. 2011 March JACC and JASE

- Detection of CAD and Risk Assessment
 - Symptomatic or ischemic equivalent
 - Asymptomatic (without ischemic equivalent)
 - Asymptomatic (without ischemic equivalent) in populations with defined co-morbidities
- After prior test results
- Risk Assessment
 - Peri-op evaluation for non-cardiac surgery without active cardiac conditions
 - Within 3 months of an ACS
 - Postrevascularization (PCI or ACS)
- Assessment of viability/ischemia
- For hemodynamics (includes Doppler during stress)
- Contrast use

Wall motion abnormality due to CAD:

what is the eye and brain integrating?

- Decreased inward systolic motion
- Decreased systolic thickening
 - Systolic thinning in extreme cases
- Regional diastolic thinning when chronic CAD
- Systolic motion is simplest to assess but Systolic Thickening is critical and most specific
Exercise echo - interpretation

<table>
<thead>
<tr>
<th></th>
<th>Rest</th>
<th>Peak exercise</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Hyperkinetic</td>
<td>Normal</td>
</tr>
<tr>
<td>Infarct</td>
<td>Abnormal</td>
<td>Abnormal</td>
<td></td>
</tr>
<tr>
<td>Ischemia</td>
<td>Normal</td>
<td>Abnormal</td>
<td>Normal</td>
</tr>
<tr>
<td>Mixed same territory</td>
<td>Abnormal</td>
<td>Worse ± larger</td>
<td>Abnormal</td>
</tr>
<tr>
<td>Mixed new territory</td>
<td>Abnormal</td>
<td>New territory abnl</td>
<td>abnormal</td>
</tr>
</tbody>
</table>

Dobutamine stress echo - interpretation

<table>
<thead>
<tr>
<th></th>
<th>Rest</th>
<th>Low dose</th>
<th>Peak dose</th>
<th>recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Nl</td>
<td>Augment</td>
<td>Hyperkinetic</td>
<td>Nl</td>
</tr>
<tr>
<td>Ischemia</td>
<td>Nl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infarct nonviable</td>
<td>Abnl</td>
<td>No ∆</td>
<td>Stable</td>
<td>Abnl</td>
</tr>
<tr>
<td>Infarct viable</td>
<td>Abnl</td>
<td>Improves</td>
<td>Abnl</td>
<td>Abnl</td>
</tr>
<tr>
<td>Mixed same territ</td>
<td>Abnl</td>
<td></td>
<td>Worse ± larger</td>
<td>Abnl</td>
</tr>
<tr>
<td>Mixed new territ</td>
<td>Abnl</td>
<td></td>
<td>New territ abnl</td>
<td>abnormal</td>
</tr>
</tbody>
</table>

Accuracy of exercise echo

<table>
<thead>
<tr>
<th>Method</th>
<th>Sens SVD</th>
<th>Sens MVD</th>
<th>Spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armstrong</td>
<td>ETT</td>
<td>81</td>
<td>93</td>
</tr>
<tr>
<td>Crouse</td>
<td>ETT</td>
<td>93</td>
<td>100</td>
</tr>
<tr>
<td>Quinones</td>
<td>ETT</td>
<td>58</td>
<td>89</td>
</tr>
<tr>
<td>Marwick</td>
<td>ETT</td>
<td>79</td>
<td>96</td>
</tr>
<tr>
<td>Galanti</td>
<td>Bike</td>
<td>93</td>
<td>92</td>
</tr>
<tr>
<td>Pozzoli</td>
<td>Bike</td>
<td>60</td>
<td>94</td>
</tr>
<tr>
<td>Hecht</td>
<td>Bike</td>
<td>84</td>
<td>100</td>
</tr>
<tr>
<td>Ryan</td>
<td>Bike</td>
<td>84</td>
<td>100</td>
</tr>
</tbody>
</table>

Sensitivity greatest in MVDs, prior MI
Dobutamine stress echo: review of 28 studies

<table>
<thead>
<tr>
<th></th>
<th>Sens</th>
<th>Spec</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>80 %</td>
<td>84 %</td>
<td>81 %</td>
</tr>
<tr>
<td>1 VD</td>
<td>74 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 VD</td>
<td>86 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 VD</td>
<td>92 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geleijnse et al, JACC 1997;30:595-606

DSE: CAD detection in individual arteries

<table>
<thead>
<tr>
<th></th>
<th>Sens</th>
<th>Spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>All vessels</td>
<td>69 %</td>
<td>91 %</td>
</tr>
<tr>
<td>LAD</td>
<td>72 %</td>
<td>88 %</td>
</tr>
<tr>
<td>LCx</td>
<td>55 %</td>
<td>93 %</td>
</tr>
<tr>
<td>RCA</td>
<td>76 %</td>
<td>89 %</td>
</tr>
</tbody>
</table>

Geleijnse et al, JACC 1997;30:595-606

Factors reducing sensitivity + specificity of stress echo

- Single vessel ds
- Mild cor stenoses
- Lt circumflex ds
- Inadequate stress
- Rapid recovery
- Late imaging
- Poor image quality
- Beta-blockers

- Cardiomyopathy
- Septal motion abnormality
 - Post-op, RVVO, LBBB
- Overcalling basal septum
- Marked hypertensive response
- Interpreter bias

Sens (false -)

Spec (false +)
Stress echo: more than just WMA to factor into interpretation

- Duration of exercise
- Resting EF
- HR achieved
- BP response
- Extent of WMA
- Rapidity of normalization
- LV response
- Coronary distribution
- Stress ECG

Potential pitfalls in stress echo influences on accuracy of test

- timing of peak images
 - exercise echo
- influence of beta blockers
- lack of “augmentation” is an abnormal response

Stress echo: interpreting the septum in the presence of left bundle branch block

- Examine thickening rather than inward motion
- View only second half of systole
 - edit digital loop
 - change speed
Pretest probability of CAD influences stress testing results

- If low pre-test probability
 - Potential for high rate of false positive tests
 - False negative tests will be low

- If high pre-test probability
 - False positive tests will be low
 - Potential for higher rate of false negative tests

Pre-test probability affecting stress test results

100 pts
Pretest likelihood
10 %

CAD +
10 pts

CAD –
90 pts

False –
2 pts

True +
8 pts

False +
9 pts

True –
81 pts

Sensitivity = 80%
Specificity = 90%
False Positive rate = 53%
False Negative rate = 2%

Pre-test probability affecting stress test results

100 pts
Pretest likelihood
90 %

CAD +
90 pts

CAD –
10 pts

False –
18 pts

True +
72 pts

False +
1 pts

True –
9 pts

Sensitivity = 80%
Specificity = 90%
False Positive rate = 1%
False Negative rate = 66%

Borrowed from T Ryan
Biggest pitfall in stress echo: identifying wall motion abnormalities

- Image quality
 - Contrast

- Future
 - Rapid acquisition of wall motion
 - "Real time" three dimensional echo
 - Quantification of wall motion
 - Myocardial strain (Doppler or Speckle)
 - Regional, global strain

American Society of Echocardiography Consensus Statement on the Clinical Applications of Ultrasonic Contrast Agents in Echocardiography

JASE 2008; 21:1179-1201

Appropriate use criteria for stress echo and contrast combined

Douglas et al, JACC + JASE March 2011

70 yo M with HTN, hyperlipidemia, severe osteoarthritis (unable to exercise on treadmill). Increasing chest pain with activity

DSE - 79% MPHR; chest pain at peak dose, ST dep on ECG
• Coronary angiogram
 – Mixed dominance
 – LAD: 70% proximal stenosis; tandem 70% stenosis mid vessel; 70% stenosis distal
 – CX: 30% stenosis proximal; occl mid vessel; OM1 70% ostial and 99% distal
 – RCA: Occluded proximally

• Stents placed

Use contrast in stress echo

• Reduced dosing during stress (increased stroke volume)
• If infusing pharmacologic stress agent use a different IV line for contrast
 – Avoid bolus of pharmacologic stressor
 – If using same line must withdraw all of infusate
• Image contrast enhanced apical views first
• Timing of injection

Advantages of integrating contrast with stress echo

• Increased proportion of adequately visualized segments
• Improved concordance between readers
• Better learning experience for novice sonographers and novice interpreters

Pulerwitz et al, JASE 2006;19:540-5