Quantification of Severity of Mitral regurgitation
With the New ASE Guidelines
Case Studies

William A. Zoghbi MD, FASE, MACC
Professor and Chairman, Department of Cardiology
Elkins Family Distinguished Chair in Cardiac Health
Houston Methodist Hospital

ASE GUIDELINES AND STANDARDS

Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation
A Report from the American Society of Echocardiography
Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance

William A. Zoghbi, MD, FASE, Chair; David Adams, FASE, 120x, FASE; Robert O. Bonow, MD,
Alfredo Correa, MD, FASE; Herbert Damato, MD, FASNC; Rebecca T. Hare, MD, FASE; John R. Harrison, MD, FASE;
Stephen E. Hendeles, MD, FASE; Shyam J. Jang, MD, FASE; Paul M. Jaffe, MD, FASE;
Gregory L. Pohost, MD, FASE; Harold V. Swan, MD, FASE; and Michael J. St John, MD, FASE

Released
The same day in March 2017!
What is New?

- Emphasis on identification of Etiology/Mechanism of regurgitation
- 2D/3D TTE—an integrative approach & algorithms to assess severity
- When is TEE needed
- Important role of CMR & CMR methodology
- The challenge of co-existing valvular lesions
- A clinical perspective...
- Library of case studies on the web: www.asecho.org/vrcases

Mitral Valve Anatomy

A Complex Apparatus

- Annulus
- Leaflets
- Chords
 - Primary, secondary & tertiary
- Papillary muscles
- Ventricular function geometry
Mitral Regurgitation

Indicators of Severity

- Mitral valve pathology
- LV/ LA size
- Color Doppler:
 - Vena contracta, Jet Area, Flow convergence
- Mitral E; Pulmonary vein pattern
- Regurgitant flow/fraction
- CW density and contour

Mitral Regurgitation- Color Doppler

3 Components of the Jet
Mitral Regurgitation

Mild Central Severe Central Severe Eccentric

Flow Convergence (PISA)

Flow Convergence Method

\[\text{Reg Flow} = 2\pi r^2 \times V_a \]
\[\text{EROA} = \frac{\text{Reg Flow}}{PKV_{\text{Reg}}} \]
\[\text{R Vol} = \text{EROA} \times \text{VTI}_{\text{Reg}} \]
Flow Convergence

- Can be used semi-quantitatively
- Assumptions of hemispheric geometry
- EORA may be underestimated in 2nd MR
- Less accurate in eccentric jets
- Variability during the cardiac cycle and limitations in non-holosystolic MR

MR is not always Holosystolic

MR Duration Needs to be Accounted for
Late Systolic MR

Cannot Use
Color Doppler Single frame measures of severity:
Jet area, VC, VCA, Flow Convergence, EROA

Mitral Regurgitation
Indicators of Severity

• Mitral valve pathology
• LV/ LA size
• Color Doppler:
 Vena contracta, Jet Area, Flow convergence
• Mitral E; Pulmonary vein pattern
• Regurgitant flow/fraction
• CW density and contour
Pulsed Doppler Volumetric Quantitation

Regurgitant Volume & Fraction

Advantages
- Quantitative, valid in multiple jets and eccentric jets
- Provides both lesion severity and volume overload

Limitations
- Needs training; Cumbersome; wide (20%) confidence limits
- Measurement of flow at MV annulus is less reliable in calcific MV and/or annulus
Chronic Mitral Regurgitation by Doppler Echocardiography

Does MR meet specific criteria for mild or severe MR?

- Yes, mild
 - Perform quantitative methods whenever possible
 - Intermediate Values: MR Probably Moderate
 - Specific Criteria for Mild MR
 - Small, narrow central jet
 - EROA ≤ 0.2 cm²
 - RVol ≤ 30 ml
 - RF ≤ 30%
 - MR Grade I
 - Specific Criteria for Moderate MR
 - EROA 0.2-0.29 cm²
 - RVol 30-44 ml
 - RF 30-39%
 - MR Grade II
 - Specific Criteria for Severe MR
 - EROA ≥ 0.4 cm²
 - RVol ≥ 60 ml
 - RF ≥ 50%
 - MR Grade IV

- Yes, severe
 - Intermediate Values: MR Probably Moderate
 - Specific Criteria for Mild MR
 - Small, narrow central jet
 - EROA ≤ 0.2 cm²
 - RVol ≤ 30 ml
 - RF ≤ 30%
 - MR Grade I
 - Specific Criteria for Moderate MR
 - EROA 0.2-0.29 cm²
 - RVol 30-44 ml
 - RF 30-39%
 - MR Grade II
 - Specific Criteria for Severe MR
 - EROA ≥ 0.4 cm²
 - RVol ≥ 60 ml
 - RF ≥ 50%
 - MR Grade IV

- Indeterminate MR
 - Consider further testing: TEE or CMR for quantitation
 - 2-3 specific criteria for severe MR or elliptical orifice
 - Poor TTE quality or low confidence in measured Doppler parameters
 - Discordant quantitative and qualitative parameters and/or clinical data

- Specific Criteria for Mild MR
 - Small, narrow central jet
 - EROA ≤ 0.2 cm²
 - RVol ≤ 30 ml
 - RF ≤ 30%
 - MR Grade I

- Specific Criteria for Moderate MR
 - EROA 0.2-0.29 cm²
 - RVol 30-44 ml
 - RF 30-39%
 - MR Grade II

- Specific Criteria for Severe MR
 - EROA ≥ 0.4 cm²
 - RVol ≥ 60 ml
 - RF ≥ 50%
 - MR Grade IV

Specific Criteria for Mild MR

- Small, narrow central jet
- EROA ≤ 0.2 cm²
- RVol ≤ 30 ml
- MR Grade I

Specific Criteria for Moderate MR

- EROA 0.2-0.29 cm²
- RVol 30-44 ml
- MR Grade II

Specific Criteria for Severe MR

- EROA ≥ 0.4 cm²
- RVol ≥ 60 ml
- MR Grade IV

* Beware of underestimation of MR severity in eccentric, wall impinging jet; quantitation is advised

** All values for EROA by PISA assume holosystolic MR; single frame EROA by PISA, VCW, and VCA overestimate non-holosystolic MR

† Regurgitant volume for severe MR may be lower in low flow conditions.

Case 1
65 yo female -- BP 160/67 mmHg -- BSA 2 m²

EDD 4.8 cm

EDV 132 mL

VCW 0.5 cm

PISA radius 0.9 cm at Va 39 cm/s

Chronic Mitral Regurgitation by Doppler Echocardiography

Does MR meet specific criteria for mild or severe MR?

- EDD > 4.8 cm
- EDD > 4.8 cm at max systolic flow
- EDD > 4.8 cm at end diastole
- EDD > 4.8 cm at both systole and diastole
- EDD > 4.8 cm with left bundle branch block
- EDD > 4.8 cm with atrial fibrillation

Mild MR

Moderate MR

Severe MR

Indeterminate MR

- Poor TEE quality or low confidence in measured Doppler parameters
- Discordant quantitative and qualitative parameters and clinical data

* Presence of incriminating left ventricular wall motion abnormalities
** All values for MR on multiplane and/or four-chamber views
† Regurgitant volume for severe MR may be lower in low flow conditions.
RVolMVinflow = MV SV - LVOT SV = 95 - 76 = 19 mL
RF = 19/MV SV = 20%

RVolLV SV = LV SV - LVOT SV = 89 - 76 = 13 mL
RF = 13/MV SV = 14%

MV SV = 0.785*MV diam²*MV VTI = 0.785*2.8²*15.4 = 95 mL
LV SV = EDV - ESV = 132 - 43 = 89 mL (LVEF 67%)

LVOT SV = 0.785*LVOT diam²*LVOT VTI = 0.785*2²*24.2 = 76 mL

EROA = 2*π*PISA²*Va/PkVel = 6.28*0.9²*39/529 = 0.38 cm²

RVol = EROA*MR VTI = 0.38*60 = 23 mL

PISA radius 0.9 cm
MR PkVel 529 cm/s
MR VTI 60 cm

Case 2
44 yo male -- BP 128/66 mmHg -- BSA 2 m²

Chronic Mitral Regurgitation by Doppler Echocardiography

Does MR meet specific criteria for mild or severe MR?

2/20/2018
RVolMV = MV SV – LVOT SV = 121 - 50 = 71 mL
RF = 71/MV SV = 59%

RVolLV = LV SV – LVOT SV = 135 -50 = 85 mL
RF = 85/MV SV = 70%

LV SV = EDV - ESV = 221 - 86 = 135 mL (LVEF 61%)

MV SV = 0.785*MVdiam^2*MVVTI = 0.785*2.9^2*18.3 = 121 mL

LVOT SV = 0.785*LVOTdiam^2*LVOTVTI = 0.785*2.1^2*14.3 = 50 mL

EROA = 2*π*PISA2*Va/PkVel = 6.28*1.32*34/514 = 0.7 cm^2

MR VTI = 86 cm

RVol = EROA*MRVTI = 0.7*86 = 60 mL

RVol MV flow = MV SV – LVOT SV = 121 - 50 = 71 mL

PISA radius 1.3 cm

Pka = 514 cm/s

MV diam 2.9 cm

LVOT diam 2.1 cm
Case 3

54 yo female – BP 114/62 mmHg – BSA 1.9 m²
RVolMVinflow = MV SV – LVOT SV = 73 – 35 = 38 mL

RF = 38/MV SV = 52%

RVolLV SV = LV SV – LVOT SV = 65 – 35 = 30 mL

RF = 30/MV SV = 41%
New ASE Valvular Regurgitation Guidelines - Endorsed by SCMR

What is New?
• Emphasis on identification of Etiology/Mechanism of regurgitation
• 2D/3D TTE—an integrative approach & algorithms to assess severity
• When is TEE needed
• Important role of CMR & CMR methodology
• The challenge of co-existing valvular lesions
• A clinical perspective...
• Library of case studies on the web: www.asecho.org/vrcases

Zoghbi W et al. JASE 30: 303, 2017