

Percutaneous Valve in Native With and Without Mitral Valve Calcification: When To Go Hybrid

Deborah Tabachnick, MD Cardiac Surgeon The Heart Hospital Baylor Plano Baylor Scott & White Health

Disclosures

None

Percutaneous Valve With Mitral Valve Calcification

- Severe mitral annular calcification can dramatically affect surgical risk
 - Risk of AV groove disruption
 - Increased operative time (pump/clamp time)
 - Debridement can increase stroke risk
 - Small surgical valve size placed
 - Increased paravalvular leak risk
- Elderly patients with comorbid conditions

- Mitral annular calcification (MAC) has been reported in nearly 10% of patients in large historical autopsy studies
- CT or echocardiographic determination of MAC has been seen in 8-15% of patients without cardiovascular disease
- The incidence of MAC may be as high as 42% in elderly patients with known cardiovascular disease
- It is estimated that MAC may be found in 24% of patients referred for mitral valve surgery

Epiphany: TAVR in MAC

- TAVR seats into calcified annulus
- Balloon mounted TAVR devices have a relatively low profile
- Case reports of TAVR in v-in-v MVR with good results and safety profiles^(1,2)
- TAVR in MAC transseptal and transapical with reasonable success in highly selected patients
- Scattered surgical discussion of successful implants.

1.Guerro, et al. *J Am Coll Cardiol Intv*. 2016;9(13):1361-1371 2.Himbert, et al. *J Am Coll Cardiol*. 2014;64(23):2557-2558

Imaging: Echo

- Mitral annular calcification
- Mitral stenosis
- Mitral regurgitation
- EF: 60%

Imaging: TEE

- Burden and distribution of MAC
- Mitral annulus sizing
- Mitral valve planimetry
- Septal thickness
- Septal-Mitral annulus plane distance
- THV mannequin embedding (Annulus & LV)

Mean: 248 Area: 4.85 cm² Min: -27 Max: 1500 SDev: 169 Avg. Diameter: 24.8 mm Perimeter: 80.0 mm

Mitral Annulus

27.7 mm

23.9 mm

Neo-LVOT 26 S3 and 29 S3 26.0 mm

29.0 mm

13.1 mm

Transcatheter Mitral Valve Replacement in Native Mitral Valve Disease with Severe Mitral Annular Calcification

Results from the First Global Registry

Mayra Guerrero, MD, FACC, FSCAI Director of Cardiac Structural Interventions NorthShore University HealthSystem

> *TVT 2016 Chicago, IL June 17, 2016*

Delivery Approach

Procedural Outcomes

	n (%)
Technical success by MVARC criteria	78/104 (75%)
Need for second valve (migration=6, MR=7)	13/104 (12.5%)
LVOT obstruction with hemodynamic compromise	11/104 (10.5%)
Valve embolization	4/104 (3.8%)
Conversion to open surgery (embolization=2, LV perforation=1, LVOTO=1)	4/104 (3.8%)
LV perforation (surgery=1, conservative=1)	2/104 (1.9%)
Pulmonary Vein Perforation	1 (0.9%)

30 Day/Procedural Mortality

26/104 (25%)

	n (%)			
Cardiovascular	11/104 (10.6 %)			
LVOT Obstruction	3 (2.9%)			
LV Perforation	2 (1.9%)			
Complete AV block	1%			
MI due to air emboli / Pulmonary vein perforation	1%			
Stroke	2 (1.9%)			
PEA arrest	1 %			
MR	1 %			
Non-Cardiac	15/104 (14.4 %)			
Multi-organ failure	9 (8.6%)			
Pneumonia	3 (2.9%)			
Thoracentesis related bleeding complication	1%			
Infection	2 (1.9%)			
	University HealthSystem Evanston Hospital			

Concerns for TAVR in MAC

- Device embolization
- LVOT obstruction
 - From device
 - From leaflet
 - From ventricular septal thickness
- Difficulty in determining positioning for deployment
 - 17.2% needing a second valve deployed*
- PVL
- High mortality rate reported
 - All cause 30 day mortality ~30%*

Septal ablation to treat LVOT Obstruction after TMVR

Courtesy of Dr. William O'Neill

MITRAL:

Mitral Implantation of TRAnscatheter vaLves

Geurrero, M. TVT 2017

MAC Primary Safety Endpoints

	N(%)
Technical success at exit from Cath Lab	22 (73.3%)
LVOTO (1 TS, 1 TA, 1 Tatrial)	3 (10%)
Need for 2 nd valve	1 (3.3%)
>2+ MR	2 (6.6%)
LV perforation (transatrial)	1 (3.3%)
VSD (transatrial)	1 (3.3%)

Primary Safety Endpoints

	N (%)		
Procedural Success at 30 days	15/29 (51.7)		
Death	5(17.2)		
Hemolysis	3 (10.3)		
Bleed (GIB, hemothorax)	2 (6.9)		
HF requiring an ASD closure	1 (3.4)		
Acute kidney injury	1 (3.4)		
LV perforation during transatrial TMVR)	1 (3.4)		
3+MR	1 (3.4)		

Trans-septal Valve in MAC

Vinod H. Thourani, MD

AATS Mitral Conclave April, 2017

Wire Ready to LAMPOON

Snare Wire from Aorta to LA

LAMPOON Loop Made

LAMPOON Burn

Valve Deployment

Post Valve 3D TEE

When To Go Hybrid

Concept for SITRAL

- <u>Surgical Implantation of TRA</u>nscatheter va<u>L</u>ve in native mitral annular calcification
- Potential benefits:
 - Reduce LVOTO risks
 - Reduce risk of embolization
 - Reduce PVL risk
 - Orient the valve into standard surgical configuration (posts at the trigones)
 - Control device depth (re-deploy if necessary)
- Performed in minimally invasive approach to reduce physical recovery

Implantation of Transcatheter Aortic Bayle Prosthesis in 3 Patients With Mitral Annular Calcification

Heike Baumgarten, MD, John J. Squiers, BSE, William T. Brinkman, MD, J. Michael DiMaio, MD, Ambarish Gopal, MD, Michael J. Mack, MD, and Robert L. Smith, MD

(Ann Thorac Surg 2016;102:e433–5)

- This is an off label use of a transcatheter valve
- Approach is right mini thoracotomy via 4th IS
- Utilizes CPB
- Can also address septal thickness with septal myectomy and TR with annuloplasty

- 84 Year old female
- MS with MAC
- NYHA IV
- Medical History: HTN, PVD S/P R fem-pop, Brain stem tumor removal 1992 (benign) with right facial droop, subclavian steal syndrome
- Normal coronaries
- STS-PROM MVR 8.1%

MV gradient: 23 mmHg MVA: 0.8 cm² RVSP: 68 mmHG

Planning CTA

Intraoperative TEE

Intraoperative Course

MI MVR via right mini thoracotomy or robotic approach with femoral bypass and cold fibrillatory arrest

Resection of A2 and chords, septal myectomy can be performed

Balloon sizing of the mitral annulus

Pledgeted sutures are placed in the trigones and at the annulus on P2 from ventricular to atrial position with possible felt buttress

- The valve is positioned with the valve skirt at the level of the annulus
- Thoracoscopic visualization is used to watch full valve deployment
- The sutures are then placed through the cuff of the valve and secured

Post Implantation 3D TEE

Postoperative Imaging POD #1 TTE

Mean gradient of 4 mmHg across the mitral valve Mean gradient of 4 mmHg across the LVOT Laminar flow

6 mmHc

4 mmHc

2.05 cm

1.81 cm

24.4 cm

10.1cm

89 bpn

Laminar flow seen through both

Postoperative TTE

Follow Up Imaging at 7 months-TTE Baylor Scotte White

- Mitral valve mean gradient 8mmHg
- LVOT mean gradient 2 mmHg
- Laminar flow through both
- EF: 65%

Follow Up Imaging Short Axis 4D CTA

No thrombus is seen on the leaflets and the valve is fully expanded with complete leaflet excursion.

Follow Up Imaging Long Axis 4D CTA

90 yo Female Severe AS and MS

Even can add a TAVR same day

THHBP Experience-First Ten Cases

STS- PROM	Indication	Concomitant Procedure	Age	Sex	Preop Mean MV Gradient	Preop Mean LVOT Gradient	Valve Type	Valve Size	LOS	Disposition	Postop Mean MV Gradient	Postop Mean LVOT Gradient
17.3	Stenosis	None	87	F	11	2	Sapien XT	26	5	Rehab	10	7
8.1	Mixed	Myomectomy	84	F	23	1	Sapien 3	26	8	Rehab	4	4
9.3	Mixed	Tricuspid Annuloplasty	86	F	9	1	Sapien 3	29	24	LTAC	4	6
14.2	Mixed	Tricuspid Annuloplasty	78	F	13	4.2	Sapien 3	29	11	Home	4	7
6.5	Stenosis	Myomectomy	77	F	12	5	Sapien 3	26	11	Rehab	6	2
4.0	Stenosis	Myomectomy	71	F	8	Unknown	Sapien XT	26	32	Death	8	9
12.6	Mixed	PFO closure	76	F	15	2	Sapien XT	26	8	Home	6	3
6.1	Stenosis	Myomectomy	70	F	17	4	Sapien XT	26	11	Home	6	2
8.9	Mixed	Myomectomy	83	F	7	3	Sapien 3	29	8	Rehab	5	1.5
9.5	Mixed	AVR, TVR, Myomectomy	80	F	5	5	Sapien XT	29	13	Rehab	6	3

Case Series-THHBP

- 14 off-label procedures have been completed at The Heart Hospital Baylor Plano, additional procedures have been completed as part of the SITRAL study
- Nine cases were performed via right thoracotomy
- Two case were done through sternotomy due to concomitant AVR and TVR
- Three cases were done robotically
- Technical and hemodynamic success was achieved in all patients
 - 2 In-hospital death (salvage patients, 1 died of ascending cholangitis & 1 from multi system organ gailure)
 - 1 Acute kidney injury (stage 2)

Case Series

- More than 20 procedures have been completed at 3 institutions
 - Technical and hemodynamic success was achieved in all patients
 - 2 Deaths (salvage patients, 1 died of ascending cholangitis & 1 died of multi system organ failure)
 - 2 Postoperative pacemaker
 - 1 Stroke
 - 1 Acute kidney injury (stage 2)

Transcatheter Mitral Valve Options Baylor Scott & White Without MAC

Transcatheter Mitral Valve Options Baylor Scott & White Without MAC

SAPIEN 3[™] valve (**A**). Reprinted with permission from Edwards Lifesciences (Irvine, CA). CardiAQ-Edwards[™] Transcatheter Mitral Valve (**B**). Reprinted with permission from Edwards Lifesciences (Irvine, CA). Medtronic Intrepid[™] transcatheter heart valve (**C**) Reprinted with permission from Medtronic (Minneapolis, MN). Tendyne[™] Mitral Valve System (**D**) Reprinted with Permission from Tendyne Holdings, LLC, a subsidiary of Abbott Vascular (Roseville, MN).

- Transcatheter approaches for addressing high risk patients with mitral valve disease are advancing
- Transcatheter approaches for addressing mitral valve disease complicated by MAC are allowing treatment in otherwise often untreatable patients
- The results thus far are relatively safe and effective though there needs to be improvement
- Surgical assistance in delivery does contribute to greater control in device delivery, reducing the post-placement lvoto, and stabilizing the device after placement

Anticipation

 With time, we will identify patients who are suitable candidates for a completely percutaneous, transseptal approach for valve replacement in the native mitral annulus and others who require a more invasive procedure due to structural hindrances that require additional intervention