Moving Right Ventricular Assessment
Beyond the Eyeball

Amiliana M Soesanto, MD
Dept Cardiology & Vascular Medicine
Faculty of Medicine, Universitas Indonesia/
National Cardiovascular Center Harapan Kita

No disclosure
The Right Ventricle Anatomy

COMPLEX GEOMETRY!

• Asymmetrical, crescentic shape, wrapped around LV

• Consists of 3 components:
 1. *Inlet,*
 2. *Apical trabecular,* and
 3. *Outlet conus (infundibulum)*

• Different structures compare to LV;
 1. *Relative apical displacement of TV,*
 2. *Band & coarse apical trabeculation,*
 3. *> 3 papillary muscles,*
 4. *A 3 leaflet TV with septal papillary muscle attachment*

Ho SY, et al. Heart 2006; 92 (Suppl I) : i2 – i3
The Right Ventricle; location in the thorax

- Placed retro-sternally
- Most anterior cardiac structure
- Near field of the ultrasound beam
 + complex geometry

- Limiting optimal echo windows and resolution
- A single 2D echo view → Incomplete visualization of the RV
- Needs more than one projection for a comprehensive evaluation of RV structure and function.

→ Assessment of dimension and function: very challenging
Eye balling ?
Eye balling?

Assessment as

ordinal categories [normal, mild, moderate, severe]

binary category (normal vs abnormal)

Accuracy and Interobserver Concordance of Echocardiographic Assessment of Right Ventricular Size and Systolic Function: A Quality Control Exercise

Lee Fong Ling, MBBS, Nancy A. Obuchowski, PhD, Leonardo Rodriguez, MD, Zoran Popovic, MD, Deborah Kwon, MD, and Thomas H. Marwick, MBBS, PhD, MPH, Cleveland, Ohio

Visual assessment
- RVS and RVSF

Quantitative assessment
- RVS (basal and mid, & longitudinal φ)
- RVSF (FAC, TAPSE, s’, RVIMP)

1. Quantitation of RV size & function is critical and reduces inter-reader variability

2. Additional definitions for grading RV function are needed.

- Visual assessment \rightarrow inaccurate and shows considerable variability
- Quantitative assessment \rightarrow improved accuracy and decreased variability, [defining the normality of the right ventricle]
- The reliability of grading mild and moderate abnormalities remains inadequate

<table>
<thead>
<tr>
<th></th>
<th>Visual</th>
<th>Quant</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVS</td>
<td>Sens</td>
<td>0.876</td>
</tr>
<tr>
<td></td>
<td>Spec</td>
<td>0.383</td>
</tr>
<tr>
<td>RVSF</td>
<td>Sens</td>
<td>0.800</td>
</tr>
<tr>
<td></td>
<td>Spec</td>
<td>0.522</td>
</tr>
</tbody>
</table>

defining the cases as normal or abnormal
The Right Ventricle Quantitative Measurements

Linear Measurements

→ Distance & Area dimension

2 D measurements → challenging because:

• the complex geometry of the right ventricle

• lack of specific right-sided anatomic landmarks (as reference points)

→ routinely assessed using multiple acoustic windows

Volumetric Measurements

• 3 D measurements → overcome the limitation of orientation and reference point

• Could be challenging in: suboptimal image quality, severely enlarge RV

• Important!

 • correct timing (end diastolic – end systolic)

 • correct tracing
Echo Windows to View the Right Ventricle

Needs ≥ 1 projections for a comprehensive evaluation of RV structure and function
The Right Ventricle Dimension: RVOT

- **RVOT prox**: from the anterior RV wall to the interventricular septal-aortic junction (PLAX) or to the aortic valve (PSAX)
- **RVOT distal**: just proximal to the pulmonary valve

- RVOT prox is less reproducible than RVOT distal
- Risk of underestimation or overestimation if the RV view is obliquely oriented with respect to RV outflow tract
- Endocardial definition of the RV anterior wall is often suboptimal
- Regional measure; may not reflect global RV size

Images:
- Image A: RVOT Prox, Normal Ø < 30 mm
- Image B: RVOT-Prox, Normal Ø < 35 mm
- Image C: RVOT Distal, PA, Normal Ø < 27 mm

end-diastole!

Inner edge to inner edge method

The Right Ventricle Dimension

Caution: different angulation → different measurement, despite similar size

- **Basal RV linear dimension (RVD1)**
 - Max transversal dimension in the basal 1/3 of RV inflow (abN > 41 mm)

- **Mid-cavity RV linear dimension (RVD2)**
 - Approximately halfway between the max basal diameter and the apex, at the level of papillary muscles (abN > 35 mm)

- **Longitudinal diameter** (abN > 83 mm)

Inner edge to inner edge method

The Right Ventricle Area

- Manual tracing of RV endocardial border: lateral tricuspid annulus → the free wall → the apex → the interventricular septum → medial tricuspid annulus
- Trabeculations, papillary muscles and moderator band are included in the cavity area

Limitation:
- Needs optimal image quality
- Challenged by coarse trabeculation
- Size underestimation if foreshortened
- Different tomographic view through cardiac cycle
- Not accurately reflect global RV size

Normal range (men) 10-24 cm²
Normal range (women) 8-20 cm²

The Right Ventricle Wall Thickness

- Useful measurement of RVH

- From the subcostal view, align the u/s beam perpendicular to the RV free wall

- Below TV annulus, at a distance + the length of open anterior TV leaflet and parallel to RV free wall

- End diastole, when it is fully open

RV Systolic Function

- Echo parameters that have the clinical utility and value demonstrated by many studies are:
 - Tricuspid Annular Plane Systolic Excursion (TAPSE)
 - Fractional area change (FAC)
 - S’ velocity of the tricuspid annulus
 - RV index of myocardial performance (RIMP)

- Another parameters:
 - RV strain and strain rate
 - RV 3 D EF

Tricuspid Annular Plane Systolic Excursion

- An useful index for evaluating RV longitudinal function.
- M-mode cursor through the lateral tricuspid annulus
- Longitudinal motion of the annulus between end-diastole and peak systole

Advantage: Simple, highly reproducible
Disadvantages:
- Affected by cardiac translation (may be over/underestimate)
- Angle dependency

abNormal < 17 mm

Fractional area change

- Defined as:
 \[
 \frac{\text{End diastolic area} - \text{End systolic area}}{\text{End-diastolic area}} \times 100\%
 \]

- Obtained by tracing RV endocardium both in systole and diastole from the annulus, along the free wall to the apex, and then back to the annulus, along the interventricular septum.

- Include trabeculations and bands inside the chamber.

- RV focused apical 4 chamber view.

Abnormal RVFAC < 35%

2D Fractional Area Change is one of the recommended methods of quantitatively estimating RV function.

Tissue Doppler Imaging S’ Velocity

- SV placed in the lateral annulus parallel to free wall
- keep the basal segment and the annulus aligned with the Doppler cursor
- Simple, reproducible → should be used in the assessment of RV function
- Angle dependent
- s’ < 9.5 cm/s is abnormal

- SV (also multiple) is placed after image acquisition (off line analysis)
- Angle dependent
- Lower absolute values and reference ranges than pulsed TDI s’ wave. Abnormal s’ < 6 cm/s

RV IMP (Tei Index)

- Global systolic and diastolic function
- Less affected by HR
- Prognostic value

\[
\text{IVCT + IVRT} \quad \text{ET} \\
\text{TCO} - \text{ET} \quad \text{ET}
\]

Pulsed Doppler: Normal ≤ 0.43

Tissue Doppler: Normal ≤ 0.54
Global Longitudinal Strain using speckle tracking imaging

- Strain: the degree of myocardial deformation compared with its original length \([L_0]\) (%) → RV free wall from base to apex
- Established prognostic value
- Angle independent, no tethering effect
- RV GLS: average of 3 segments (reproducible & recommended)
- Abnormal finding: > -20% OR -[< 20] %

- RV-focused apical four-chamber view
- Trace RV basal free wall → apex
- Don’t start from too low (anulus)
- RoI: Myocardium (exclude pericardium)
The Right Ventricle 3 Dimension Imaging

- Needs specific software and requires offline analysis with experience operator
- Includes RV outflow tract contribution to overall function
- Correlates with RV EF by CMR
- Load dependency and dependent on adequate image quality

Temporal resolution > 20–25 vol/sec

- 3D data set is acquired from a RV focused apical 4 chamber view by stitching together the subvolumes generated from 4-6 consecutive beats.
- Minimal depth and optimal sector angle (should recover entire RV)
- The RV endocardial surface is semi automatically traced (end-systole and end-diastole).
- Myocardial trabeculae and moderator band should be included in the cavity
- 3D surface model → RV EDV and ESV, stroke volume, and EF.

Conclusion

1. Assessment of RV size and function is important but **challenging** because of it’s complex geometry, location behind the sternum, at near field us the echo view, and coarse trabeculation

2. Eye balling assessment of the right ventricle is **not recommended** because it is inaccurate and shows significant variability

3. **Quantitative assessment** increase accuracy and reduce variability of the measurements

4. It will need **multiple acoustic windows** to assess the RV comprehensively because of the complex geometry

5. The are **guidelines** that recommend how to assess the RV size and function, to standardize the parameters, to improve the diagnosis accuracy and agreement
Thank you