HOW TO ASSESS AORTIC STENOSIS:
NEW GUIDELINES, BICUSPID AORTIC VALVE, DILATED AORTIC ROOT

MARTIN G. KEANE, MD, FASE
PROFESSOR OF MEDICINE, LEWIS KATZ SCHOOL OF MEDICINE
DIRECTOR OF ECHOCARDIOGRAPHY, TEMPLE UNIVERSITY HEALTH SYSTEM

DISCLOSURES

• NO FINANCIAL DISCLOSURES
• NO CONFLICTS OF INTEREST
EACVI/ASE CLINICAL RECOMMENDATIONS

Recommendations on the Echocardiographic Assessment of Aortic Valve Stenosis: A Focused Update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography

Helmut Baumgartner, MD, FESC, (Chair), Judy Hung, MD, FASE, (Co-Chair), Javier Bermejo, MD, PhD, John B. Chambers, MB BChir, FESC, Thor Edvardsen, MD, PhD, FESC, Steven Goldstein, MD, FASE, Patrizio Lancellotti, MD, PhD, FESC, Melissa Le'evre, RDCS, Fletcher Miller Jr., MD, FASE, and Catherine M. Otto, MD, FESC, Muenster, Germany; Boston, Massachusetts; Madrid, Spain; London, United Kingdom; Oslo, Norway; Washington, District of Columbia; Liege, Belgium; Bari, Italy; Durham, North Carolina; Rochester, Minnesota; and Seattle, Washington

- **As = Most Common Primary Heart Valve Disease**
- **Echo is the Primary Modality for Assessment & Staging**

ECHO ESSENTIALS FOR EVALUATION OF AS

- **Valve Anatomy for Etiology**
- **Severity of Stenosis**
- **Assisting with Management Decision-Making**
- **Recognize Low Output / Low Gradient States**
BASIC ROOT STRUCTURE
PARASTERNAL LONG AXIS VIEW

- Fibrous Annulus
- Sinotubular junction
- Leaflets
- Sinuses of Valsalva
NORMAL AV M-MODE
COAPTATION IN CENTER OF AORTIC ROOT

NORMAL AV
ORIENTATION AND OPENING

Diastole

Systole
AORTIC STENOSIS – ETIOLOGY

• SENILE / DEGENERATIVE CALCIFIC
 • RESEMBLES ECTOPIC BONE
 • RISK FACTORS ~ ATHEROSCLEROSIS
 • RENAL DYSFUNCTION MAY ACCELERATE

• PREMATURE CALCIFIC BICUSPID STENOSIS

• RHEUMATIC
 • LESS COMMON IN THE US
 • MORE FUSION / LESS CALCIFICATION

• LESS COMMON
 • TYPE 2 HYPERLIPIDEMIA, SLE, IRRADIATION, PAGET’S DISEASE

CALCIFIC AORTIC STENOSIS:
PROGRESSIVE REDUCTION IN LEAFLET MOTION
BICUSPID AORTIC VALVE

- **Most common congenital anomaly (1.3%)**
- **Commissure may be horizontal or vertical**
 - **Horizontal:** Anterior and Posterior leaflets
 - **Vertical:** Right and Left (coronary) leaflets
- **Accelerated calcification → premature stenosis**
- **Proximal aortopathy (even in normals)**
- **Associated abnormalities**
 - **Coarctation — 6% prevalence (vice versa — 50% BAV prev. w/coarct**
 - **Intracranial aneurysms — 10% prevalence, screen w/coarct**

BICUSPID AORTIC VALVE
PLAX VIEW – DOMING

Diastole

Systole
BICUSPID AORTIC VALVE
PSAX VIEW MORPHOLOGY

Diastole

Systole

SYSTOLIC ELLIPSOID ORIFICE IDENTIFIES AS BICUSPID.

BICUSPID AV PHENOTYPES

- Genetic heterogeneity
- Significance controversial
 - Raphe = ↑'ed AS, AR, ultimate AVR
 - Ø reproducible assoc — aneurysm / DISS

BICUSPID AORTOPATHY

- **Root & proximal ascending aorta dilated**
 - **Normal**s and **ABNLS** – out of proportion to valve Dz
 - **Risk**: Aneurysm (0.9%) & Dissection (0.03%)

- **What is “abnormal”?**
 - Dilation: Root ≥40 mm, Ascending ≥37 mm
 - Growth rate ~0.4-0.6 mm/yr

- **When to intervene?**
 - **Dissection rate (0.5%)** when aorta ≥45 mm
 - **Isolated aorta** – replace ≥55 mm, or ≥50 mm + “High risk”
 - **Surgical BAV Dz** – replace if ≥45 mm

Echo diagnosis, but confirm with CT or MR

If first-time patient, may reimage at 6 months and if no progression then yearly
RHEUMATIC AORTIC STENOSIS:
LESS CALCIFICATION, MORE COMMISSURAL FUSION

AORTIC VALVE:
OTHER ANOMALIES ASSOCIATED WITH AS

UNICUSPID AoV

QUADRACUSPID AoV
LVOT OBSTRUCTION RULE-OUTS

- Dynamic Sub-Valvular
- Fixed Sub-Valvular
- Supra-Valvular

ECHO ESSENTIALS FOR EVALUATION OF AS

- Valve Anatomy for Etiology
- Severity of Stenosis
- Assisting with Management Decision-Making
- Recognize Low Output / Low Gradient States
MULTIFACTORIAL ASSESSMENT OF SEVERITY

Level 1 Recommendation – Appropriate in all patients

- **Peak AV jet velocity (m/sec)**
- **Mean AV gradient (mmHg)**
- **Valve area by continuity equation (cm²) – VTI**
- **“Simplified” continuity equation – V_max**
- **Velocity ratio (dimensionless)**
- **Planimetry**

Table 2: Measures of AS severity obtained by Doppler-echocardiography

<table>
<thead>
<tr>
<th>Measure</th>
<th>Units</th>
<th>Formula/Method</th>
<th>Cut-off for severe</th>
<th>Concept</th>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS jet velocity</td>
<td>m/s</td>
<td>Direct measurement</td>
<td>4.0</td>
<td>Velocity increases as stenosis severity increases</td>
<td>Direct measurement of velocity. Strongest predictor of clinical outcomes</td>
<td>Correct measurement requires parallel alignment of ultrasound beam</td>
</tr>
<tr>
<td>Mean gradient</td>
<td>mmHg</td>
<td>(\Delta P = \frac{1}{2} \rho v^2)</td>
<td>40</td>
<td>Pressure gradient calculated from velocity using the Bernoulli equation</td>
<td>Mean gradient is established by tracing the velocity curve</td>
<td>Flow dependent</td>
</tr>
<tr>
<td>Continuity equation valve area</td>
<td>cm²</td>
<td>(AVA = \frac{V_{max} \times VTI_{max}}{VTI_{min}})</td>
<td>1.0</td>
<td>Volume flow proximal to and in the stenotic orifice is equal</td>
<td>Measures effective orifice area. Feasible in nearly all patients</td>
<td>Requires LVOT diameter and flow velocity data, along with aortic velocity.</td>
</tr>
<tr>
<td>Simplified continuity equation</td>
<td>cm²</td>
<td>(AVA = \frac{V_{max} \times VTI_{max}}{VTI_{min}})</td>
<td>1.0</td>
<td>The ratio of LVOT to aortic velocity is similar to the ratio of AVA to effective aortic valve area</td>
<td>Uses more easily measured velocities instead of VTI</td>
<td>Less accurate if shape of velocity curves is atypical.</td>
</tr>
<tr>
<td>Velocity ratio</td>
<td>None</td>
<td>(VR = \frac{V_{max}}{V_{aortic}})</td>
<td>0.25</td>
<td>Effective AVA expressed as a proportion of the LVOT area</td>
<td>Doppler-only method. No need to measure LVOT size. Less variability than continuity equation.</td>
<td>Limited longitudinal data. Ignores LVOT size variability beyond patient size dependence.</td>
</tr>
<tr>
<td>Planimetry of anatomic valve area</td>
<td>cm²</td>
<td>TTE, TEE, 3D-echo</td>
<td>1.0</td>
<td>Anatomic (stenotic) CSA of the aortic valve orifice as measured by 2D or 3D echo</td>
<td>Useful if Doppler measurements are unreliable</td>
<td>Construction coefficients (anatomic/effective) value area may be variable. Difficult with severe valve calcification.</td>
</tr>
</tbody>
</table>
PEAK JET VELOCITY – CONTINUOUS WAVE DOPPLER

• **Multiple acoustic windows**
 • Highest velocity – R parasternal, supra-sternal

• **Parallel to ejection jet**
 • Probe positioning
 • No angle correction

• **Pedof preferred**
 • Signal-to-noise ratio
 • Optimize spectral outline
 • 50–100 mm/s sweep
 • Avoid feathery signals

AORTIC STENOSIS BY PEAK VELOCITY

• **Mild stenosis**: 2.0 – 2.9 m/s

• **Moderate stenosis**: 3.0 – 3.9 m/s

• **Severe stenosis**: > 4.0 m/s

• “**Very Severe**” or “**Critical**” stenosis: > 5.0 m/s
BEWARE THE DYNAMIC GRADIENT!!

PEAK AoV GRADIENT =
“MAXIMUM INSTANTANEOUS GRADIENT”

Can be calculated from the peak jet velocity, using modified Bernoulli:

\[4 \times (V_{\text{MAX}})^2 \]

\[4 \times (5.25 \text{ m/s})^2 \]

110 mmHg
INSTANTANEOUS VS. PEAK-TO-PEAK

- **Doppler peak gradient always higher than Cath**
- **Echo a more “physiologic” measurement**
- **Mean gradient and AVA should correlate**
- **Gradients are flow dependent**

MEAN GRADIENT – CONTINUOUS WAVE DOPPLER

- **Average gradient during entire ejection period**
 - Integration of velocity over time
 - Approximately 70% of Peak Instantaneous Gradient

STENOSIS SEVERITY BY MEAN GRADIENT

- **Mild stenosis:** < 20 mmHg
- **Mod stenosis:** 20 – 39 mmHg
- **Severe stenosis:** ≥ 40 mmHg
PITFALLS OF MEASUREMENT

- **Misalignment with Aortic Flow**
 - Under-estimation of peak velocity
 - Major under-estimation of mean gradient

- **Recording Eccentric MR Jet**
 - Major over-estimation of velocity & gradient
 - CW spectral morphology differences

- **Pressure Recovery Issues**
 - Magnitude ~ EOA / Aortic-A
 - Over-estimation of PV & MG with small aortas (<30 mm)

PITFALLS OF "FLOW STATES"

- **Higher SV = Higher Gradients**
 - Aortic regurgitation
 - Hyperdynamic function

- **Lower SV = Lower Gradients**
 - Reduced ejection fraction
 - Small ventricular cavity (LVH)
 - High systemic vascular resistance / impedance
 - Significant mitral regurgitation
AORTIC STENOSIS
VALVE AREA ASSESSMENT

- NORMAL VALVE AREA = 3 - 4 cm²
- MILD STENOSIS: > 1.5 cm²
- MODERATE STENOSIS: 1.0 - 1.5 cm²
- SEVERE STENOSIS: < 1.0 cm²
- “CRITICAL” STENOSIS: < 0.7 cm²

CONTINUITY EQUATION

BASED ON CONSERVATION OF MASS

FLOW WITHIN LVOT = FLOW ACROSS AV

- LVOT AREA * VTI_{LVOT} = AVA * VTI_{AV}
- \(\pi \times (LVOT_{\text{radius}})^2 \) * VTI_{LVOT} = AVA * VTI_{AV}

\[
\frac{\pi \times (LVOT_{\text{radius}})^2 \times VTI_{LVOT}}{VTI_{AV}} = AVA
\]
LVOT diameter 2.1 cm

PITFALLS – THE LVOT IS NEVER EASY

??? Go slightly off-axis

FLOW THROUGH LVOT
PULSE WAVE DOPPLER

- PW SPECTRAL ENVELOPE
 - SAMPLE VOLUME IN LVOT
 - LAMINAR ENVELOPE !!
 - APICAL VIEWS

- VELOCITY TIME INTEGRAL (VTI)
 - FLOW THROUGH A SINGLE POINT

VTI = 19 cm

FLOW ACROSS THE AORTIC VALVE:
CONTINUOUS WAVE DOPPLER

VTI = 85 cm
CALCULATING AORTIC VALVE AREA

• \(\text{AVA} = \frac{(\text{Diameter}_{LVOT} / 2)^2 \times \pi \times VTI_{LVOT}}{VTI_{AV}} \)

• \(\text{AVA} = \frac{(2.1 \text{ cm} / 2)^2 \times 3.14 \times 19 \text{ cm}}{85 \text{ cm}} \)

• \(\text{AVA} = 0.7 \text{ cm}^2 \)

PITFALLS FOR THE CONTINUITY EQUATION

• LVOT MEASUREMENT
 • \(\text{RADIUS}^2 \) – PROPAGATE LARGER ERROR
 • LVOT ELLIPTICAL – CSA FROM 3D TEE OR CT

• LVOT VELOCITY
 • TOO CLOSE TO THE AV – OVER-ESTIMATE AVA
 • TOO FAR INTO THE LV – UNDER-ESTIMATE AVA

• AV VELOCITY
 • MISSING TRUE PEAK:
 • USE MULTIPLE SITES / PEDOF / HIGHEST VELOCITY
 • BEWARE MR!
DOPPLER VELOCITY RATIO

• Derived from continuity equation
 • Eliminates some errors — no LVOT factor
 • Relatively “flow independent”

\[\text{DVR} = \frac{\text{VTI}_{LVOT}}{\text{VTI}_{AV}} \]

• Can use velocity instead of VTI

• Criteria for severe AS – DVR < 0.25

PLANIMETRY OF THE AORTIC VALVE

• Correlates with invasively obtained areas

• Flow dependent
 • Difficult to distinguish decreased opening due to LV failure

• TEE superior
 • Use color flow area

• Dense calcification reduces accuracy

AVA = 1.1 cm²
SUMMARY

MEMORIZE!!!

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Recommendations for grading of AS severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic sclerosis</td>
<td>Mild</td>
</tr>
<tr>
<td>Peak velocity (m/s)</td>
<td>≤ 2.5 m/s</td>
</tr>
<tr>
<td>Mean gradient (mmHg)</td>
<td>–</td>
</tr>
<tr>
<td>AVA (cm²)</td>
<td>–</td>
</tr>
<tr>
<td>Indexed AVA (cm²/m²)</td>
<td>–</td>
</tr>
<tr>
<td>Velocity ratio</td>
<td>–</td>
</tr>
</tbody>
</table>

ECHO ESSENTIALS FOR EVALUATION OF AS

- **Valve anatomy for etiology**
- **Severity of stenosis**
- **Assisting with management decision-making**
- **Recognize low output / low gradient states**
AORTIC STENOSIS – PHYSIOLOGIC SEQUELAE

• CHRONIC LV PRESSURE OVERLOAD
 • MYOCARDIAL HYPERTROPHY – PROGRESSIVE, CONCENTRIC
 • LA DILATATION

• PROGRESSIVE DYSFUNCTION
 • DIASTOLIC, THEN SYSTOLIC
 • END STAGE – LIMITED CARDIAC OUTPUT

• AFTER LONG LATENCY... SYMPTOMS
 • EARLY – DYSPNEA AND FATIGUE (OFTEN SUBLTE)
 • LATE – "CARDINAL SX" – ANGINA, SYNCOPE, CHF

THE OLD DAYS:
THE “SYMPTOMATIC CLIFF”

[Diagram showing survival rates and onset of severe symptoms with age]

BRAUNWALD E, ET AL. CIRCULATION (1968) 38:61-67
THE NEW ERA (2014)
“STAGES” OF DISEASE

• **Stage A:**
 • At risk for disease

• **Stage B:**
 • Progressive disease (asymptomatic)

• **Stage C:**
 • Severe disease (asymptomatic)

• **Stage D:**
 • Severe disease (symptomatic)

“Stage C” can be subdivided:

• **Stage A:**
 • At risk for disease
 ![Observe]

• **Stage B:**
 • Progressive disease
 ![Observe]

• **Stage C1:**
 • Severe (asymptomatic) – Compensated LV
 ![??]

• **Stage C2:**
 • Severe (asymptomatic) – Decompensated LV
 ![Intervene]

• **Stage D:**
 • Severe disease (symptomatic)
 ![Intervene]
ASSIST DECISION-MAKING IN ASYMPTOMATIC PATIENT

CALCIFIED/THICKENED LEAFLETS
REDUCED SYSTOLIC OPENING

“ASYMPTOMATIC”

V\text{max} \geq 5 \text{ m/s} + \text{low AVR risk}

\begin{align*}
\text{V}_{\text{max}} \geq 4 \text{ m/s; MG} \geq 40\text{mmHg} \\
\text{EF} < 50\% \\
\text{ETT} \downarrow \text{BP} \downarrow \text{ex capacity} \\
\text{Rapid progression + low AVR risk}
\end{align*}

\begin{align*}
\text{AVR (IIa)} & \quad \text{AVR (I)} & \quad \text{AVR (I)} & \quad \text{AVR (IIa)} & \quad \text{AVR (IIb)}
\end{align*}

ECHO ESSENTIALS FOR EVALUATION OF AS

• VALVE ANATOMY FOR ETIOLOGY
• SEVERITY OF STENOSIS
• ASSISTING WITH MANAGEMENT DECISION-MAKING
• RECOGNIZE LOW OUTPUT / LOW GRADIENT STATES
LOW GRADIENT" AORTIC STENOSIS

Peak Velocity
2.74 m/sec

Mean Gradient
15 mmHg

Calculated AVA
0.5 cm²

LOW GRADIENT AS
LOW OUTPUT - LOW EJECTION FRACTION

- Low SV (Low Flow) leads to low gradients

- "REAL AS"
 - 1° Problem: Severe obstruction to flow
 - 2° Problem: Depressed EF

- "PSEUDO AS"
 - 1° Problem: Depressed EF
 - 2° Problem: Moderate obstruction to flow
 Made to look severe by SV

Improves with AVR

Does not improve with AVR
LOW GRADIENT AS
DOBUTAMINE STRESS ECHO

- Low dose Dobutamine (<10 mcg/kg/min)
 - ↑ LV contractility ↑ Stroke Volume
- Increase SV by ≥ 20%
 - Real AS Peak vel / mean gradient ↑-↑↑
 AVA unchanged or ↓ (≤ 1 cm²)
 - Pseudo AS Peak vel / mean gradient minimal ↑
 AVA typically ↑ (>1 cm²)

- What if SV doesn’t increase?
 - Lack of contractile reserve – bad situation

LOW GRADIENT AS
LOW OUTPUT - NORMAL EJECTION FRACTION

- EF >50%, AVA ≤1 cm² ... but MG <40 mmHg?
- Still at stroke volume problem
 - SV INDEX ≤35 mL/m² despite NL EF
- “Typical” patient:
 - Older, h/o hypertension, women
 - Concentric LVH, small cavity, impaired filling
 - Markedly increased vascular impedance
- Low dose DSE may or may not help

SUMMARY - ACE THE EXAM!!
ECHO ESSENTIALS FOR EVALUATION OF AS

- **Valve Anatomy for Etiology**
 - Trileaflet Calcific, BAV, Rheumatic

- **Severity of Stenosis**
 - Know "The Big 3" — Memorize Table 3 from EACVI/ASE

- **Assisting with Management Decision-Making**
 - Physiologic sequelae (LVH/Dysfxn); Concurrent DZ
 - How ECHO Helps in Asymptomatic and Symptomatic AS

- **Recognize Low Output / Low Gradient States**
 - Discern TRUE from PSEUDO Severe AS