When is Multimodality Assessment of Cardiac Function Needed?

1

Craig Broberg, MD MCR Knight Cardiovascular Institute, Oregon Health & Science University No Disclosures Gadolinium is off-label for cardiac MR

Multimodality methods at our disposal

Multimodality methods at our disposal

3

Multimodality methods at our disposal

Multimodality Comparisons

Metanalysis involving 65 studies, mostly echo compared to CMR Only structurally normal LVs included (ie no congenital)

5

Rigolli M. Open Heart 2016;3:e000388

Multimodality Comparisons

Metanalysis involving 65 studies, mostly echo compared to CMR Only structurally normal LVs included (ie no congenital)

Difference			
<u>vs. CMR</u>	N	LVEDV	LVESV
2D Echo	1683	-33	-16

Multimodality Comparisons

Metanalysis involving 65 studies, mostly echo compared to CMR Only structurally normal LVs included (ie no congenital) Era didn't matter (<2005 vs. after 2009)

Difference			
<u>vs. CMR</u>	<u>N</u>	<u>LVEDV</u>	<u>LVESV</u>
2D Echo	1683	-33	-16
2D CE Echo	283	-18	-8
3D Echo	1159	-14	-6

HSU DHSU

7

Rigolli M. Open Heart 2016;3:e000388

Sources of Error		
ECHO	CMR	СТ
Apex foreshortening Endocardial dropout	Basal plane interpretation	Beta blocker/NTG Fluid bolus
Lower spatial resolution		Lower temporal resolution

Methodologic Differences

ECHO Long axis CMR Short axis* CT Long/short axis*

* Variable use

Methodologic Differences

ECHO Long axis

Papillaries and trabeculations excluded CMR Short axis*

Papillaries and trabeculations included*

* Variable use

CT Long/short axis*

Papillaries and trabeculations included

W HSU

11

Methodologic Differences ECHO CMR CT Short axis* Long/short axis* Long axis **Papillaries and Papillaries and Papillaries and** trabeculations trabeculations trabeculations excluded included* included **Outflow tract** Outflow tract Outflow tract included* excluded included * Variable use

Papillaries and Trabeculations

Sometimes the differences can be extensive

Notes that the second s

13

Temporal Resolution: Frame count

Echo = 60 frames, CMR = 30 frames, CT = 10 frames

Temporal Resolution: Acquisition Time

17

CMR Sensitive to Volumetric Change

MERIT-HF: Metoprolol vs. Placebo (randomized, double-blind) for 6 months CMR pre and post treatment

	<u>Baseline</u>	<u>6 months</u>	
LVEDVI	150 ml/m ²	126 ml/m ²	(p = 0.01)
LVEF	29%	37%	(p = 0.005)
	(no change with placebo)		

Groenning BA, J Am Coll Cardiol. 2000 Dec;36(7):2072-80

CMR Sensitive to Volumetric Change

MERIT-HF: Metoprolol vs. Placebo (randomized, double-blind) for 6 months CMR pre and post treatment

	<u>Baseline</u>	<u>6 months</u>		
LVEDVI	150 ml/m ²	126 ml/m ²	(p = 0.01)	N = 22
LVEF	29%	37%	(p = 0.005)	
	(no change wi	(no change with placebo)		N = 19
			Groopping PA LAm	Coll Cardial 2000 Dr

Groenning BA, J Am Coll Cardiol. 2000 Dec;36(7):2072-80

Circ 1995;92:212-218

ANZ HF Trial (ECHO) N= 415 MERIT-HF (Clinical End Points) N= 3,998

<u>онзи</u> 19

When is functional assessment relevant?

Clinical Decisions that may depend on volume/function

- Timing of valve surgery
- Device implantation (ICD)
- Determining need for medical therapy (is this heart "normal") Prognosis

These can all be addressed with echocardiography

When CMR?

CMR is an adjunct to Echo

From Guideline Statements: "CMR is useful when

"echocardiography is inconclusive ..."

"issues are not satisfactorily addressed ..."

"etiology is unclear ..."

"other means do not provide ..."

"risk remains borderline ..."

25

Clinical Questions for which CMR is used

CMR functional assessment especially for

- Inadequate echo quality
 - Quantification of valve regurgitation
 - Myocardial tissue characterization
 - RV quantification/Shunts

CMR Assessment of Valve Regurgitation

CMR Assessment of Valve Regurgitation

"The most challenging aspect in the management of MR is accurate quantification of severity and consequent decision regarding timing of intervention"

Kar S, Sharma R, JACC 2015 MAR 24:65(11):1089

CMR Assessment of Valve Regurgitation

CMR vs. Echo done in 103 patients with mitral regurgitation, MR severity agreement between the methods was weak Only 22% of those with severe MR by echo had severe MR by CMR CMR had better reproducibility (90% vs. 61%)

Uretsky S, JACC 2015 65(11):1078-88

CMR Assessment of Valve Regurgitation

CMR vs. Echo done in 103 patients with mitral regurgitation,

38 underwent surgery

LV remodeling was assessed ~6 months later ("gold standard") Degree of remodeling more predictive by CMR, not by echo

Valve Guidelines

1B "CMR is indicated in patients with . . . suboptimal echo images for the assessment of LV function and measurement of AR severity."

1B "CMR is indicated in patients with chronic primary MR to assess . . . MR severity and when not satisfactorily addressed by TTE."

Valve Stenosis

CMR less advantageous than echo Velocity can be measured Less sensitive to finding peak gradient

33

Myocardial Imaging (not just function)

Cardiomyopathy Assessment with CMR

Etiology of myocardial change

Overall Prognostication

Arrhythmia prediction

35

LGE and T1 mapping

Extracellular Volume Fraction

- ECV detects fibrosis burden in the setting of:
 - dilated cardiomyopathy
 - atrial fibrillation
 - hypertrophic cardiomyopathy
 - muscular dystrophy
 - aortic stenosis
 - amyloidosis
 - mitral valve prolapse

37

"Parametric mapping should be considered in the diagnostic evaluation of all patients with heart failure and unexplained troponin elevation."

lles L, J Am Coll Cardiol. 2008;52:1574-1580 Ling LH,J Am Coll Cardiol. 2012;60:2402-2408 Brouwer WP, J Cardiovasc Magn Reson. 2014;16:28 Florian A, J Cardiovasc Magn Reson. 2014;16:81

Iles L, J Am Coll Cardiol. 2011;57:821-828

Aus dem Siepen F, European heart journal cardiovascular Imaging. 2014 de Meester de Ravenstein C, J Cardiovasc Magn Reson. 2015;17:015-0150

Messroghli D, J CMR (2017) 19:75

"Parametric Mapping" for Myocardium

Not just seeing the function, but seeing what's in the tissue

39

"Parametric Mapping" for Myocardium

41

Arrhythmia Prediction (VT/SCD/ICD shock)

Metanalysis of thousands of patients:

DCM LGE present in 44%, mean follow up 3 years Any ventricular arrhythmia with LGE 21% 6.5%/year without LGE 4.7% 1.6%/year

HR=6.7; p < 0.001

Di Marco A, JACC Heart Fail 2017;5:28-38

Arrhythmia Prediction (VT/SCD/ICD shock)

Metanalysis of thousands of patients:

DCM LGE present in 44%, mean follow up 3 years Any ventricular arrhythmia with LGE 21% 6.5%/year

without LGE	4.7%	1.6%/yea
	HR=6.7	; p < 0.001

Di Marco A, JACC Heart Fail 2017;5:28-38

HCM LGE present in 60% , mean follow up 3.1 years Cardiac death with LGE 4.9% without LGE 1.2% OR=2.9; p = 0.047

Green JJ, JACC: CVI Apr 2012, 5 (4) 370-377

43

Echo vs. CMR in risk prediction

409 Italians with cardiomyopathy (52% ischemic, 48% non-ischemic) CMR and Echo done at baseline. CMR volumes were bigger

Echo vs. CMR in risk prediction

409 Italians with cardiomyopathy (52% ischemic, 48% non-ischemic) Followed for ~1.5 years

25% had MACE (19% ventricular arrhythmias)

Higher LVEDV (both echo and CMR) was a significant predictor

Strongest prediction was based on CMR volume + LGE

45

Pontone G, Circ Cardiovasc Imaging. 2016 Oct;9(10). pii: e004956

Guidelines

DCM

I (C) "CMR imaging is recommended to . . . characterize cardiac tissue in subjects with inadequate echocardiographic images or where the echocardiographic findings are inconclusive or incomplete."

IIA (B) "CMR should be considered in patients with ventricular arrhythmias when echocardiography does not provide accurate assessment of LV and RV function and/or evaluation of structural changes."

Guidelines

DCM

I (C) "CMR imaging is recommended to . . . characterize cardiac tissue in subjects with inadequate echocardiographic images or where the echocardiographic findings are inconclusive or incomplete."

IIA (B) "CMR should be considered in patients with ventricular arrhythmias when echocardiography does not provide accurate assessment of LV and RV function and/or evaluation of structural changes."

HCM

IIB (C) "When SCD risk stratification is inconclusive after documentation of the conventional risk factors, CMR imaging with assessment of LGE may be considered in resolving clinical decision making."

RV Visualization

CMR is well suited for RV

Not limited by acoustic windows No assumptions needed about geometry

Useful for

RV cardiomyopathies Pulmonic and tricuspid valves Pulmonary hypertension Congenital heart disease

Intervention guidelines are mostly based on CMR based assessment

Right Ventricular Volume and Function

CMR excels in RV imaging

Strain by CMR?

Feature tracking algorithms. Temporal resolution is different than echo

51

Take Home Points on Multimodality Imaging

Echo for all, CMR and CT for specific circumstances

Echo will typically underestimate the ventricular volumes relative to CMR

CMR is more reproducible and quantitative volumes and valve regurgitation

CMR provides assessment of myocardial tissue which can be prognostic

Functional CT is especially useful for metal valves, metal implants and when CMR is unusable

