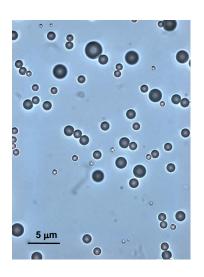
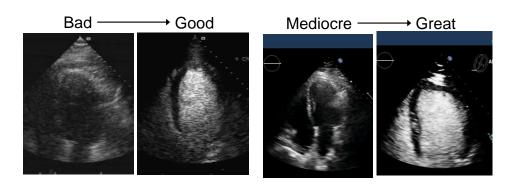
The Contrast Basics: Contrast Agents and the Ultrasound Approaches to Detect Them

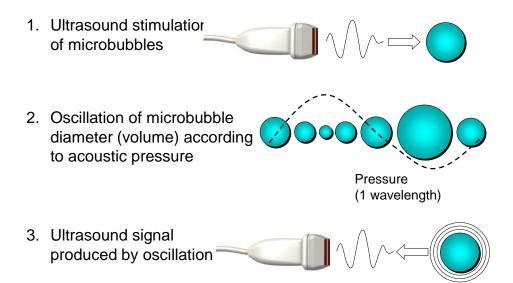


Jonathan R. Lindner, M.D.
M. Lowell Edwards Professor of Cardiology
Knight Cardiovascular Institute
Oregon Health & Science University
Portland, Oregon

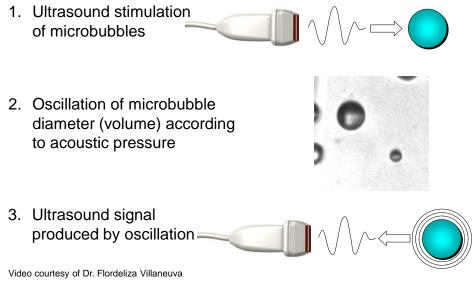
Disclosures: Investigator-initiated grants from Lantheus and GE LIfesciences


1

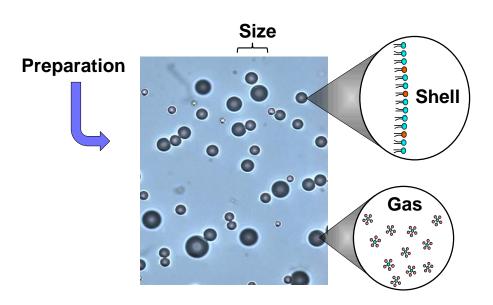
Ultrasound Contrast Agents


- Encapsulated microbubbles with albumin or lipid shell
- 2-5 microns in diameter
- Stability enhanced by highmolecular weight gas
- Signal produced by their "ringing" in an ultrasound field (volumetric oscillation)
- Special "bubble-specific" imaging presets available

Impact on Assessment of LV Size and Function


3

Acoustic Signal Generation During MCE


4

Acoustic Signal Generation During MCE

5

Microbubble Characteristics

6

Examples of Commercially-Produced Microbubble Contrast Agents

Name	Shell	Gas	Size (μm)
Optison	Albumin	Octafluoropropane	2-4.5
Definity	Lipid/surfactant	Octafluoropropane	1.1-3.3
Sonovue/Lumason	Lipid	Sulfur hexafluoride	1.5-2.5
Imagent	Lipid	Perfluorohexane	6.0
Sonazoid	Lipid	Decafluorobutane	2-3
Levovist	Lipid-galactose	Air	
Cardiosphere	PLGA/albumin	N ₂ /Air 2-3	
Acusphere	PLGA polymer	Perfluorocarbon	

7

UEAs Approved by the United States FDA

Agent	Manufacturer/vial contents	Mean diameter	Shell	Gas
Lumason (sulfur hexafluoride lipid-type A microspheres)	Bracco Diagnostics, 5 mL (reconstituted)	1.5–2.5 μm (maximum 20 μm, 99% ≤10 μm)	Phospholipid	Sulfur Hexafluoride
Definity (perflutren lipid microsphere)	Lantheus Medical Imaging, 1.5 mL	1.1–3.3 μm (maximum 20 μm, 98% ≤10 μm)	Phospholipid	Perflutren
Optison (perflutren protein type-A microspheres)	GE Healthcare, 3.0 mL	3.0–4.5 μm (maximum 32 μm, 95% ≤10 μm	Human albumin	Perflutren

Composition-related Issues

- Stability "shelf life" and in vivo
- Practicality steps to preparation
- Safety
- Microvascular behavior
- Non-linear signal generation (SNR)
- Acoustic robustness (SNR)

9

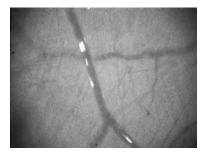
Definity (Perflutren Lipid Microspheres)

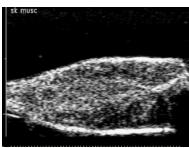
- Requires refrigeration
- · Requires activation in vialmix
- Bolus or infusion indication; latter good for perfusion

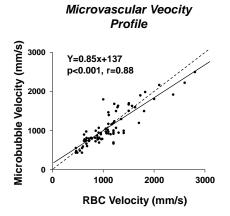
Lumason (Sulfur Hexafluoride Lipid)

- No refrigeration needed
- Kit that requires reconstitution with saline
- Bolus only indications

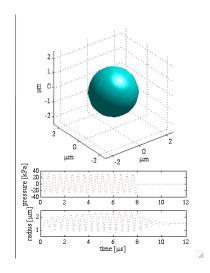
Optison (Perflutren Albumin)

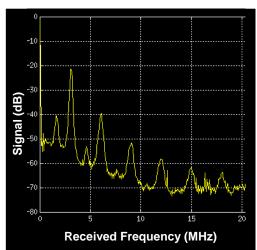

- Requires refrigeration
- No assembly required



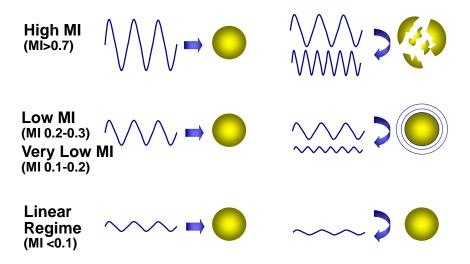


Microvascular Behavior of MBs



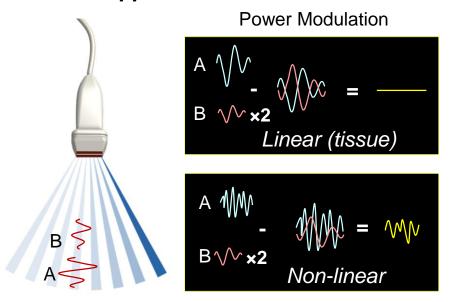


Lindner JR, et al. J Am Soc Echocardiogr 2002;15:396


11

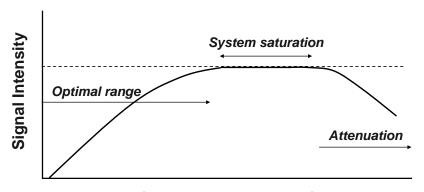
Acoustic Signal Generation

Mechanical Index and Microbubble Responses



13

Tissue Suppression with Phase Inversion



Tissue Suppression with Power Modulation

15

Microbubble Concentration vs Signal

Microbubble concentration

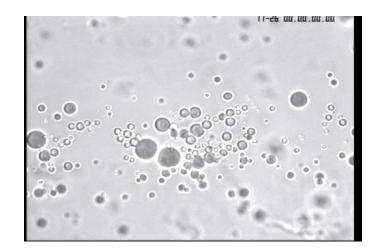
Concentration Issues

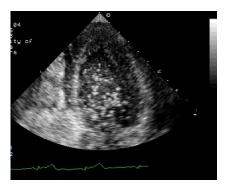
Too Low

Too High

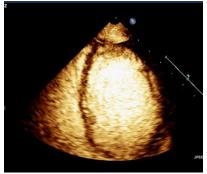
17

Optimal Concentration


Rib Attenuation


19

Microbubble Destruction



20

Acoustic Power and LV Opacification

Low Power (MI 0.2)

21

Safety of Lipid-shelled Contrast (Definity)

- 66,164 doses of Definity, and 12,219 doses of Optison administered
- Severe reactions in 8 patients (<1:10,000)
- · Anaphylactoid reactions in 6 patients
- No deaths
- No events in patients with possible ACS or CHF

Wei K, et al. J Am Soc Echocardiogr 2008;21:1202

Safety Issues

- Only contraindication for ALL agents is known allergy to the agent or its components
- R to L shunts have been removed
- Patients with allergy to blood products (Optison only)
- Do not administer as an arterial injection
- Religious reasons may preclude use of Optison
- Pregnancy categories are B or C
- Package insert mentions PVCs when used with intermittent high-MI bursts
- Safety has been established in small studies of with pulmonary hypertension, although not all studies evaluated those with severe PH
- Main concern is pseudoanaphylaxis (CARPA)

23

Pseudoanaphylaxis: Treatment in Adults

Epinephrine	0.3-0.5 mL of 1:1,000 by SQ or IM route 0.5-1.0 mL of 1:10,000 by IV route	Maintain airway and BP
Diphenhydramine	25-50 mg IV or IM	Anti-histamine
Albuterol or other beta-2 agonist	0.5 mL of 0.5% soln nebulized in 2.5 mL	Maintain airway
Cimetidine	200 mg IM or PO	Anti-histamine
Methylprednisone or other IV steroid	125 mg IV q 6 hr	Late phase reactions