

Caseous MAC

- On CT scan, CCMA appears as a well-defined oval or crescent-shaped hyperdense mass with peripheral calcification, usually along the posterior mitral annulus, has very high Hounsfield units, and lacks contrast enhancement.
- The central hyperdensity is thought to be secondary to the liquefactive material that fills the center of the mass

Elgendy, IW and Conti, CR. Clin. Cardiol. 36, 10, E27–E31 (2013)

Caseous MAC

- Cardiac MRI is considered to be the technique of choice in doubtful cases.
- Findings of CCMA on cardiac MRI include a well-defined mass with hyperintense center and hypointense rim, discrete from the adjacent myocardium and posterior mitral valve on T1-weighted fast spin-echo imaging.
- A similar centrally hyperintense mass with a peripheral rim of hypointensity is also visualized with T1-weighted spoiled gradient-echo imaging techniques
- On T2-weighted MRI sequences, CCMA appears as a mass devoid of a central signal but with a ring of high intensity compared with the surrounding myocardium

ASE American Society of Echocardiography

Elgendy, IW and Conti, CR. Clin. Cardiol. 36, 10, E27–E31 (2013)

Case Presentation

8/29/19 MARK LEBEHN, MD

Case 1

Ms AE is a 55 yo woman with a history of breast CA S/P lumpectomy and adjuvant radiation therapy (2010), metastatic pancreatic adenocarcinoma ongoing chemotherapy, and DVTs (bilateral), who presented with symptoms of 1 week of fatigue, dyspnea on exertion, and intermittent heart burn.

The day of admission she underwent a routine staging CT chest/abd/pelvis with contrast and Transthoracic Echocardiogram leading to referral to ED.

Mechanism of Action

ANGIOJET uses high pressure saline to create a vacuum at the tip of the catheter to break up and remove thrombus.

- 1. Saline jets travel backwards at high speed to create a negative pressure zone (less than -600 mmHg) causing a powerful vacuum effect.
- 2. Cross-Stream[™] windows optimize the fluid flow for more effective thrombus removal.
- 3. Thrombus is drawn into the catheter where it is fragmented by the jets and evacuated from the body.

- 1. Zeni et al in 2003 applied the AngioJet[®] RT in 17 patients presenting with PE. In this series, the AngioJet[®] RT procedure was generally associated with the administration of an intrapulmonary thrombolysis, mortality rate: 11.8%.
- 2. Chechi et al suggested the safety and efficacy of this specific RT procedure in 51 high-risk (defined as a Miller index ≥17 at angiography) PE patients; mortality rate: 15.7%.
- 3. Nassiri et al have reported the AngioJet[®] RT ± power-pulse spray technique in 15 patients presenting mainly with non-high-risk PE (93% of the included sample); no mortality.
- 4. Bonvini et al piloted the AngioJet[®] RT in a series of patients presenting cardiogenic shock with technical success in all cases; 30d mortality was 70%.
- 1. Zeni PT Jr, Blank BG, Peeler DW. J Vasc Interv Radiol. 2003;14:1511-5.
- 2. Chechi T, Vecchio S, Spaziani G, Giuliani G, Giannotti F, Arcangeli C, Rubboli A, Margheri M. Catheter Cardiovasc Interv. 2009;73:506-13.
- 3. Nassiri N, Jain A, McPhee D, Mina B, Rosen RJ, Giangola G, Carroccio A, Green RM. Ann Vasc Surg. 2012;26:18-24.
- 4. Bonvini RF, Roffi M, Bounameaux H et al. Eurintervention 2013 Apr 22;8(12):1419-27. doi: 10.4244/EIJV8I12A215.

POTENTIAL ANGIOJET®-RELATED COMPLICATIONS

- 1. Fragmentation of the clot induces significant hemolysis which may be associated with a massive release of neurohormonal substances such as adenosine and bradykinin at the pulmonary vasculature level.
 - This phenomenon, associated with the concomitant activation of stretch receptors in the pulmonary arteries, is considered to be the leading cause of procedure-related bradyarrhythmias and
- 2. Hemolysis related severe hyperkalemia and haemoglobinuria.
 - Hyperkalaemia may contribute to worsening the electrical instability, finally leading to severe ventricular arrhythmias, while haemoglobinuria causes further deterioration of renal function, which is often already impaired by the concomitant severe low cardiac output which occurs during high-risk PE.

NBTE

• NBTE is a rare and may occur in 4% of all patients with disseminated cancer

• Highest rate in patients with underlying malignancy compared to the general population on autopsy (1.25% versus 0.2%; highest incidence with pancreatic adenocarcinoma)

- Lung, pancreas, gastric, ovarian and adenocarcinoma of unknown origin
- Adenocarcinoma most frequent histological type

NBTE

 H&P, modified Duke's criteria w/ blood cultures, hypercoagulable workup, TTE, brain MRI, though no laboratory tests available to confirm the diagnosis

• Rx- treat the underlying disease process, anticoagulation, follow up echo Q3-6 months, palliative care

 DDx- thrombus, infective endocarditis, fibroelastoma, and Lambl's excrescences

Case Presentation

Rebecca T. Hahn Mark Lebehn

<section-header><section-header><figure><figure>

- MAD with disjunction > 8.5 mm was associated with nonsustained ventricular tachycardia (OR 10 95% CI 1.28-78.1).
- Late gadolinium enhancement in anterolateral papillary muscle was strongly associated with serious arrhythmic event (OR 7.35 95% CI 1.15-47.02).

Bennett S, et al . Mitral annular disjunction: A systematic review of the literature. Echocardiography. 2019;36:1549–1558.

LOE detected by MR LV fibrosis was more prevalent in the MVP group (36.7% vs. 6.7%; p < 0.001). **During follow-up (median 1,354 days), MVP patients with LV fibrosis had the highest event rate for arrhythmic events. During follow-up (median 1,354 days), MVP patients with LV fibrosis had the highest event rate for arrhythmic events. During follow-up (median 1,354 days), MVP patients with LV fibrosis had the highest event rate for arrhythmic events. During follow-up (median 1,354 days), MVP patients with LV fibrosis had the highest event rate for arrhythmic events. During follow-up (median 1,354 days), MVP patients with LV fibrosis had the highest event rate for arrhythmic events. During follow-up (median 1,354 days), MVP patients with LV fibrosis had the highest event rate for arrhythmic events. During follow-up (median 1,354 days), MVP patients with LV fibrosis had the highest event rate for arrhythmic events. During follow-up (median 1,354 days), MVP patients with LV fibrosis had the highest event rate for arrhythmic events. During follow-up (median 1,354 days), MVP patients with LV fibrosis had the highest event rate for arrhythmic events. During follow-up (median 1,354 days), MVP patients with LV fibrosis had the highest event rate for arrhythmic events. During follow-up (median 1,354 days), MVP patients with LV fibrosis had the highest event rate for arrhythmic events. During follow-up (median 1,354 days), MVP patients with LV fibrosis had the highest event rate for arrhythmic events. During follow-up (median 1,354 days), MVP patients with LV fibrosis had the highest event rate for arrhythmic event rate for arrhythmic**

RT3DE Datasets of the Annulus

Lee AP, et al. JACC Cardiovasc Imaging. 2017 Dec;10(12):1424-1433.

- There is annular disjunction (doubled arrows) spanning circumferentially from 210° to 310° (i.e., disjunction arc degree = 100°).
- The maximal disjunction distance, defined as the maximal separation between the atrial wall–MV attachment and the basal LV musculature, is 10 mm.
- The disjunction index, calculated as the product of the disjunction arc degree and the maximal disjunction distance, is 100° × 10 mm = 1,000° · mm.

Yellow line depicts the true atrial-ventricular junction. Asterisks indicate the fibrous trigones

Most common location is P2 and P1 (less common P3).

January 22nd, 2020

Case Presentation: Is This Severe AS or Pseudo AS (Echo and CT Imaging)

REBECCA T. HAHN, MD, FACC PROFESSOR OF MEDICINE COLUMBIA UNIVERSITY COLLEGE OF MEDICINE

1

	\sim			
- 1	(C	\sim
	L	а	~	-
	\sim	9	\sim	\sim

Clinical H	istory				
Age	83 years				
Gender	Male				
Medical history	Heart Failure, HTN, Hypercholesterolemia S/P MI, MidLAD and RCA Stent				
Rx	ASA 81 mg QD Metoprolol ER 50 mg QD Furosemide 40 mg QD Spironolactone 37.5 mg QD Atorvastatin 20 mg QD				

Heart Failure NYHA class III, ACC/AHA stage C

Creatinine 0.81 mg/dL

NT pro-BNP 9 952 pg/mL

ECG: Sinus rhythm

Physical Examination

Height (cm): 177, Weight (kg): 70 BSA 1.87 m²

BP 124/70; HR 68 bpm

No jugular venous distention Soft S2 III/VI SM RUSB Clear lungs No edema

Baseline TTE	
Echo Variable (TTE/TEE)	Measure
Jet Velocity (m/s)	2.98
Mean Gradient (mmHg)	21.3
Calculated AVA (cm ²)	0.83
Calculated AVA index (cm2/m2) 1.87 m2 BMI = 22.3 kg/m²	0.46 (severe)
DVI	0.16
TTE LVOT TTE annulus diameter	2.55 cm 2.62 cm
Ejection Fraction (%)	35%
LV Stroke Volume (ml)	44.6 ml 24 ml/m²
Severity of AR	1-2+
Severity of MR	1-2+
RV Pressure (mmHg)	38 mmHg

Stage	Definition	Valve Anatomy	Valve Hemodynamics
D1	Symptomatic severe high- gradient AS	Severe leaflet calcification or congenital stenosis with severely reduced leaflet opening	 Aortic Vmax ≥4 m/s or mean ΔP ≥40 mm Hg AVA typically is ≤1.0 cm2 (or AVAi ≤0.6 cm2/m2) but may be larger with mixed AS/AR
D2	Symptomatic severe low- flow/low-gradient AS with reduced LV EF	Severe leaflet calcification with severely reduced leaflet opening	 AVA ≤1.0 cm2 with Aortic Vmax <4 m/s or mean ΔP <40 mm Hg Dobutamine stress echocardiography shows AVA ≤1.0 cm2 with Vmax ≥4 m/s at any flow rate
D3	Symptomatic severe low- gradient AS with normal LVEF or paradoxical low- flow severe AS	Severe leaflet calcification with severely reduced leaflet opening	 AVA ≤1.0 cm2 with Aortic Vmax <4 m/s or mean ΔP <40 mm Hg AVAi ≤0.6 cm2/m2 and Stroke volume index <35 mL/m2 Measured when patient is normotensive (systolic BP <140 mm Hg)

C	Dobutamine Stress Case 2										
	LVOT VTI (cm)	SV (ml)	ET (msec)	Flow (ml/s)	AV Pk Vel (m/s)	AV Mn Grad (mmHg)	AV VTI (cm)	DVI	AVA (cm²)		
Rest	8.4	44.6	264	169	2.98	21.3	53.9	0.16	0.83		
5 mcg	9.7	51.5	264	195	3.08	20.2	53	0.18	0.96		
10 mcg	9.9	52.6	235	223	3.07	21.0	51	0.19	1.00		
20mcg	11.04	56.4	232	253	3.52	23	55.4	0.20	1.02		
Maximum 1 Maximum </td <td>31% increase in stroke volume</td> <td>And off Units The Second Second Second Second Control Second Contr</td> <td>mcg</td> <td>All and a second second</td> <td>6.1 0 5/4 - 1-0 0 0 </td> <td>AVAi = 0.545</td>				31% increase in stroke volume	And off Units The Second Second Second Second Control Second Contr	mcg	All and a second	6.1 0 5/4 - 1-0 	AVAi = 0.545		

D	2: Low Fl	ow, Lov	v EF			~
Baseline		Peak dose (2	0 mcg/kg/min)	-		
Peak gradient	35.5 mmHg	Peak gradient	49 mmHg			
Mean gradient	21.3 mmHg	Mean gradient	23 mmHg	Subcostal	Calciur	n Score =
AVA	0.83 cm ² (0.44 cm ² /m ²)	AVA	1.02 cm ² (0.55 cm ² /m ²)	SAX View	2750 A	'n
DVI	0.16	DVI	0.20			
SV	44.6 ml (24 ml/m²)	SV	58.6 ml (31.3 ml/m ²)		Women	Men
LVEF	25%	LVEF	30%	AVC	1,274 AU	2,065 AU
% incre	ase in stroke v	olume with	dobutamine	AVC density	292 AU/cm2	476 AU/cm2
Seve	re aortic steno	sis by index	ed AVA	Clavel MA et al Cardiol. 2013; (. J Am Coll 62:2329–2338.	

Guidelines In	dications for AVR in Classical Low-Flow, Low-Gradie	nt AS
Stage D2 Defi	nition: AVA≤1.0 cm ² , Mean gradient<40 mmHg, LVEF<50%	
Guidelines	Recommendation for AVR	Class
ACC-AHA 2014/2017	AVR is reasonable in symptomatic patients with low LVEF, low-flow/low-gradient severe AS with a DSE that shows a mean	lla

	gradient ≥40 mm Hg with an AVA ≤1.0 cm ² at any dobutamine dose	lla			
ESC-EACTS 2017	AVR should be considered in symptomatic patients with low LVEF, low-flow/low-gradient severe AS (mean gradient ≥40 mmHg) with flow reserve on DSE	I			
ESC-EACTS 2017	AVR may be considered in symptomatic patients with low LVEF, low-flow/low-gradient severe AS without flow reserve on DSE, particularly when CT calcium scoring confirms severe AS				
Vahanian et a	I. EHJ 2012 Nishimura, Otto et al. JACC 2014				

Black) 60.0%

114

-1 te Alue Years (Blue) 200% 200% 200%

30.0% -Share 50.0%

10.09 tetual

0.0%

10.149

Strange, G. et al. J Am Coll Cardiol. 2019:74(15):1851-63

5199

N

2021 2529 20310 2539 404 10 1549

Peak Aortic Valve Velocity m/s in 0.5 m/s locr

Individuals presenting with a mean AV gradient >20.0 mm Hg or peak AV velocity >3.0 m/s (or DVI 0.25-0.3) had a high risk of dying in the longer term that was similar to the risk in patients presenting with severe AS at baseline.

		-	_	Disease	e Progression				
	Grade/Stage	Grading Criteria		Stage O No cardiac damage	Stage 1	Stage 2 LA-Mitral damage	Stage 3 P&-Treuspid damage	Stage 4	
2	Staging Criteria				Li Hopertradio 275 glimi Fenulto 275 glimi Fenulto Li Datatoli: Dystanesten Godini Zi Vi systemi el Vi recore, CIS 2-15% CMI (colescentia) and reglacement filtrono) Biocaliza Biol Executed Biol Executed Biol Executed St72 Executed St72	LA Dilaton Indexed LA volume >34 mL/m ² Mitrai Regurgitation a Moderation	Pulmonary hypertension Systolic NAP a 50 mm Hg Tricunpid Regengitation 's Moderate	RV systolic dysfunction TAPSE <17 mm Trocupid anniss et <3.5 cm/s severe Low Fice SV index, <30 mL/m ²	
Valve Stenosis Severity	Grade O Aortic Sclerosis	Mild/Moderate AoV Calcification		Disease Management					
	Grade 1 Mild AS	V _{max} 2.0-2.9 m/s Milan MG <20 mm Hg Mild/Moderate AcV Calcification							
	Grade 2 Moderate AS	V _{max} 3.0-3.9 m/s. MG 20-39 mm Hg AYA v1.0 cm ² Moderate AoV CaldPication *Aurtic Valve NaF Uptake	gement			TAVR UNL	DAD trial		
	Grade 3 Asymptomatic Severe A5	V _{max} z4.0 m/s MG ≥40 min Hg AVA <1.0 cm ² *Aurtic Volve NaF Uptake	ase Mana	EAI	RLY-TAVR, EVOLV	D, AVATAR, E	STIMATE trials	Q.	
	Grade 4 Asymptomatic Very Severe AS	V _{man} ±5:0 m/s Maan.JP >60 mm Hg AVA <0.6 cm ² Severe AoV Calcification	Dise	indication of AVR (Class IIa) (RECOVERY trial)					
	Grade 5 Symptomatic Severe AS	V _{min} 24.0 m/s MG 240 mm Hg And/or AVA <1.0 cm ² Moderate Aoy Calcification		indication of AVR (Class (-IIa)					

Algorithm for Treatment os AS

Red indicates conservative (follow-up) management.

Yellow indicates no evidence yet for intervention, but ongoing trials will be instructive.

Green represents current guidelinebased indications for intervention in AS

Vannan M et al. J Am Coll Cardiol 2019;74(15);1864-67