

Topilsky Y et al. J Am Coll Cardiol Img 2019;12:433–42

Variables	Univariable ana	itysis		Multivariable analysis			
	Hazard ratio	95% CI	P-value	Hazard ratio	95% CI	P-value	
Age (years)	1.03	1.02-1.04	<0.001	1.03	1.02-1.04	<0.001	
Sex (female)	1.23	0.93-1.36	0.229		-	-	
Diabetes mellitus	1.64	1.29-2.07	<0.001			_	
History of coronary artery disease	1.65	1.36-2.00	<0.001	-	-	-	
History of atrial fibrillation	0.90	0.73-1.10	0.288	-		-	
Lung disease	1.43	1.17-1.75	<0.001				
Functional TR vs. organic TR	0.96	0.56-1.63	0.875				
Severe TR vs. moderate TR	1.07	0.91-1.28	0.421	-	-		
Presence of pacemaker or defibrillator lead	1.13	0.94-1.38	0.200				
eGFR (mL/min/1.73 m ²)	0.98	0.97-0.99	<0.001	_		-	
TAPSE (each 1-mm decrease)	1.05	1.03-1.07	<0.001	1.04	1.02-1.06	<0.001	
LVEF (each 1% decrease)	1.02	1.01-1.02	<0.001	1.02	1.01-1.02	< 0.001	
RV systolic pressure (mmHg)	1.02	1.01-1.02	<0.001	1.02	1.01-1.02	<0.001	
Isolated CABG*	1.18	0.78-1.79	0.426	-	-	-	
Left-sided valvular intervention*	0.90	0.69-1.80	0.442	-			
Tricuspid annuloplasty ^a	0.74	0.50-1.10	0.134				
Time-to-development of significant TR (years)	1.09	1.07-1.12	<0.001	1.09	1.06-1.11	<0.001	

Fastest development of significant TR (\leq 1.2 years) were **older**, more frequently **female** and showed more **RV** dilation and dysfunction as compared to patients with slowest development of TR (\geq 9.0 years).

Prihadi EA et al. Eur Heart J. 2018 Oct 14;39(39):3574-3581.

Guidelines for Tricuspid Regurgitation	ESC/ EACTS	AHA/ ACC
Primary TR		
Symptomatic isolated severe TR without severe RV dysfunction	1	lla
Severe TR undergoing left-side surgery	1	I
Moderate TR undergoing left-side surgery	lla	NM
Asymptomatic isolated mild or moderate TR and progressive RV dilatation or RV function deterioration	lla	IIb (only for severe TR)
Secondary TR		
Severe TR undergoing left-side surgery	1	1
Mild or moderate TR at the time of left-side surgery with either dilated annulus (≥40 mm or >21 mm/m ²) or prior evidence of right heart failure	lla/llbª	lla
Moderate TR and PH undergoing left-side surgery	NM	IIb
After left-side surgery, severe TR with symptoms OR progressive RV dilatation/dysfunction but without severe RV or LV dysfunction, left-sided valve dysfunction and severe PH	lla	IIb ^b

ESC, European Society of Cardiology; NM, not mentioned; PH, pulmonary hypertension; RV, right ventricle; TR, tricuspid regurgitation.

^a IIa indication with dilated annulus, IIb indication for prior right heart failure

^b IIb indication only for persistent symptoms (no mention of progressive RV dilatation or dysfunction)

	TABLE 4 Tricuspid	Annulus Param	eters in Men a	nd Women					
	3DE Parameters	End D	iastole	Mid-S	ystole	End S	ystole	Late D	iastole
	Nonindexed	Men	Women	Men	Women	Men	Women	Men	Women
dimension	Area, cm ²	9.5 ± 1.9	7.8 ± 1.6*	8.6 ± 1.6	6.8 ± 1.4*	8.5 ± 1.7	6.8 ± 1.5*	11.6 ± 2.5	9.9 ± 2.3
oftware-generated annulus	Perimeter, cm	11.1 ± 1.2	10.1 ± 1.0*	10.5 ± 1.0	$9.4 \pm 1.0^{\bullet}$	10.5 ± 1.0	$9.4 \pm 1.0^{\ast}$	12.3 ± 1.3	11.4 ± 1.3
	Long axis, mm	$\textbf{37.8} \pm \textbf{4.4}$	34.7 ± 3.7*	35.5 ± 3.9	31.9 ± 3.4*	$\textbf{35.67} \pm \textbf{4.0}$	32.2 ± 3.8*	41.6 ± 4.8	38.7 ± 4.4
	Short axis, mm	$\textbf{31.7} \pm \textbf{4.5}$	28.4 ± 3.8*	$\textbf{30.7} \pm \textbf{3.8}$	27.1 ± 3.7*	$\textbf{30.4} \pm \textbf{3.8}$	$26.9\pm3.8^{\bullet}$	$\textbf{35.5} \pm \textbf{5.3}$	31.6 ± 4.3
1992 C	Circularity	0.84 ± 0.10	$\textbf{0.82} \pm \textbf{0.09}$	087 ± 0.09	085 ± 0.09	$\textbf{0.86} \pm \textbf{0.09}$	$\textbf{0.83} \pm \textbf{0.09}$	0.86 ± 0.10	0.82 ± 0.10
	Indexed (to BSA)	Men	Women	Men	Women	Men	Women	Men	Women
9	Area, cm ² /m ²	4.9 ± 0.9	4.7 ± 0.9*	4.5 ± 0.8	4.1 ± 0.8*	4.4 ± 0.8	4.1 ± 0.8*	6.0 ± 1.2	5.9 ± 1.3
	Perimeter, cm/m ²	5.8 ± 0.6	6.1 ± 0.7*	5.5 ± 0.5	5.6 ± 0.7*	5.5 ± 0.6	$5.6 \pm 0.7^{*}$	6.4 ± 0.7	6.9 ± 0.9
E0 0	Long axis, mm/m ²	19.7 ± 2.2	$20.8\pm2.6^{\ast}$	18.5 ± 2.0	19.1 ± 2.4*	18.6 ± 2.1	$19.3 \pm 2.4^{*}$	21.6 ± 2.4	$\textbf{23.2} \pm \textbf{3.0}$
	Short axis, mm/m ²	16.5 ± 2.2	17.0 ± 2.4	16.0 ± 1.9	16.2 ± 2.3	15.8 ± 2.0	16.0 ± 2.4	18.5 ± 2.7	18.9 ± 2.7

- > Cardiac cycle timing is an important determinant of TA size and function
- Sex is an important determinant of TA size and function.
 - After indexing to BSA, women were found to have larger TA perimeters and longer long-axis dimensions than men.
 - > Fractional changes in area, perimeter, and long-axis dimensions were larger in women than in men

Karima Addetia et al. J Am Coll Cardiol Img 2019;12:401–12

Current guidelines – Vena contracta width (and PISA)

VC Width – can be measured in multiple locations, and the regurgitant orifice is not generally symmetric

Current guidelines – Color flow jet area "Severe, wide-open TR may have low velocity, without aliasing or turbulence, and thus may be difficult to see as a distinct jet by color Doppler" - Zoghbi 2017 Limitations: **RV Inflow View** 4-Chamber View Direction and shape of jet may overestimate (central) or underestimate (eccentric, wallimpinging) jet area Jet flow (and thus color Doppler jet area) is governed mainly by conservation of momentum: Flow (Q) = $A \times v$ Momentum (M) = Q x vFor the same effective regurgitant orifice area (A), a 2.5 We have been underestimating TR *m/s jet (i.e. tricuspid regurgitant jet) will have* 1/4x *the* using color Doppler jet area!!! color jet area as a 5.0 m/s jet (i.e. mitral regurgitant jet)

Problem with TR

Volume overload is well-tolerated for years

• No reduction in RV function

Few symptoms of insidious onset

No prior interventional therapy available except surgical TVR/repair • GDMT = diuretic (Class IIa)

Poor understanding about grading the severity of TR on Echo • Patients present LATE!!

Variable	Mild	Moderate	Severe	Massive	Torrential
VC (hislane)	<3 mm	3 6 9 mm	7.13 mm	14. 20 mm	>21 mm
EROA (PISA)	<20 mm ²	20-39 mm ²	40-59 mm	60-79 mm ²	≥21 mm ≥80 mm ²
3D VCA or quantitative FROA ³	-2011111	20-371111	75-94 mm	95-114 mm ²	>115 mm ²
A ANT				1 and the second	
	A Star				

Yogev Peri¹, Ben Sadeh¹, Chen Sherez¹, Aviram Hochstadt¹, Simon Biner¹, Galit Aviram², Meirav Ingbir¹, Ido Nachmany³, Guy Topaz⁴, Nir Flint¹, Gad Keren¹, and Yan Topilsky¹*

European Heart Journal - Cardiovascular Imaging (2019)

- The optimal cut-off value to separation survival between severe vs. lesser degree of TR was 0.35 cm² [P < 0.0001, HR =2.0 (1.5-2.7)].
- The optimal threshold to separation survival between severe vs. 'torrential' [massive in the Hahn/Zamorano grading scheme] TR was 0.7 cm² [P = 0.005, HR =2.6 (1.2–5.1)].

Stage	e 17. Stages o Definition	f TR Valve Anatomy	Valve Hemodynamics*	Hemodynamic Consequences	Symptoms	Stages of TR			
	Mild rheumatic change Mild protapse Mild protapse Other (e.g., IE with vegetation, early carcinoid deposition,		• No or trade in	• wone	 None or in Heraton to other left heart or pulmonary/pulmonary vascular disease 	Stages OF Th			
able	17. Sta Defini	ages of TR	Valve Anatomy	Valve	Hemodynamics*	Hemodynamic Consequences	Symptoms		
2	Sympton sever	natic Primary • Flail on leaflet Function • Severe (>40 n • Marke	r grossly distorted s al ₂ annular dilation mm or >21 mm/m²) d leaflet tethering	 Central j Vena cor >0.70 ci CW jet di dense, tri peak Hepatici reversal 	et area >10.0 cm ² ntracta width m ensity and contour: iangular with early wein flow: systolic	 RV/RA/IVC dilated with decreased IVC respirophasic variation Elevated RA pressure with "c-V" wave Diastolic interventricular septal flattening Reduced RV systolic function in late phase 	 Fatigue, palpitations, dyspnea, abdominal bloating, anorexia, edema 		
C	Asymptomatic severe TR Symptomatic severe TR	Primary Fiail or grossly distorted leaflets Flunctional Severe annular dilation (>40 mm or 22 mm/m ²) Marked leaflet tethering Primary Flail or grossly distorted leaflets Flail or grossly distorted leaflets Severe annular dilation (>40 mm or >21 mm/m ²) Marked leaflet tethering	blunting 0 entral jet area >10.0 em² Vera contracta widh >0.7 om² W by jet density and contour: dense, triangular with early peak Hepatic vein flow: systolic reversail Central jet area >10.0 cm² • Wy jet density and contour: dense, triangular with early peak • CW jet density and contour: dense, triangular with early peak • Hepatic vein flow: systolic revenal	 RV/RA/IVC dilated with decreased IVC respirophasic variation Elevated RA pressure with "c-V" wave Diastolic interventricular septal flattening may be present RV/RA/IVC dilated with decreased IVC respirophasic variation Elevated RA pressure with "c-V" wave Diastolic interventricular septal flattening Reduced RV systelic function 	None, or in relation to other left heart or pulmonary/pulmonary vascular disease Fatigue, palpitations, dyspnea, abdominal bloating, anorexia, edema	 Valve Anatomy Severity of Disease Hemodynamic cons Symptoms 	sequences		

Two leaflets (anterior and posterior) are dependent upon a large anterior papillary muscle attached to the anterolateral RV wall.

Two TV leaflets (septal and anterior) are connected to the intraventricular septum (via chordal attachment to the septal papillary muscle or directly to the septum)

Dahou A et al. J Am Coll Cardiol Img 2019;12:458–68

Dietz MF et al. Circulation. 2019;140:836-845

Univariable Predictors of <1Grade Reduction (Severe TR at 1 month FU)

Variable	Beta	Standard	P-value	Best	Ss	Sp	AUC
	coefficient	error		Cutoff			
PISA-EROA	1.74	0.97	0.05	0.77	78	80	0.78
TR VC Min	6.86	3.25	0.0008	1.0	70	93	0.84
TR VC Max	4.15	1.71	0.0005	1.6	82	87	0.87
RV End-diast Diameter (Base)	1.43	0.74	0.03	5.2	83	56	0.72
RV End-diast Diameter (Mid)	2.06	0.94	0.008	3.9	83	75	0.76
RV End-diastolic Area, cm2	0.23	0.09	0.005	28	67	81	0.78
RV End-systolic Area, cm2	0.25	0.13	0.038	18	67	75	0.72
TA diameter (End-diast), cm			0.09				
Tethering Volume	0.48	0.26	0.045	2.30	82	73	0.72
RA Volume	0.02	0.01	0.016	102	100	50	0.73

tct2019

	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
Symptoms	None	None*	None-vague*	Current or previous episodes of RHF	Overt RHF and/or end-orga damage due to chronic RV volume overload#
TR grade	Less than moderate	>Moderate	Severe	Severe	Torrential
Annular remodelling	Normal	Normal or mildly remodelled	Present	Moderate-severe	Severe
Leaflet coaptation	Normal	Mildly abnormal	Abnormal	Coaptation gap	Large coaptation gap
Tethering	None	None or mildly abnormal (<8 mm)	Abnormal (usually <8 mm)	Significantly abnormal with varying degree of tethering	Significantly abnormal (usually >8 mm)
RV function and remodelling	Normal	Normal function Absent or mild remodelling	Mild RV dysfunction and/or remodelling	>Moderate dysfunction and remodelling	Severe RV dysfunction and remodelling
ent studies sugg	gest that in the pre	esence or absence of P	'H, tricuspid annula	r dilation and right/	left atrial enlargem

