Assessing LV Systolic Function: when to use contrast or 3D echo

Michael H. Picard, MD, FASE No disclosures

Fastest method (<10 sec) 3D fully auto increased precision Quantitative (5–7 min): requires 3D semi-auto vast experience; most accurate Quantitative (7–10 min); requires vas 3D manual experience; most accurate Quantitative (>5 min); requires vas 2D triplane experience; provides a 16-segment model Quantitative (<5 min); requires vast 2D biplane experience; guideline-recommended Quantitative (<1 min); geometrica M-mode EF assumptions: not reliable Semi-quantitative method (1-2 min); reliability may WMA scoring be questionable; requires vast experience Current fastest method (<1 min); reliability may be questionable; Visual EF requires vast experience; overused in routine practice Routine clinical use Limited clinical use Mainly research No longer recommended EF = ejection fraction: M-mode = mono-dimensional: WMA = wall motion abnormalities. Spitzer et al. Cardiac Failure Review 2017;3:97-101

Corrigan Minehan Heart Center

Figure 3: Stairway of Echocardiographic Methods for the Assessment of Left Ventricular Ejection Fraction

LV function in clinical practice: role of echo

- **Diagnosis** systolic and diastolic dysfunction
 - Etiology for symptoms
- Assessing **response** to treatment
- Assessing risk and prognosis
 - Need for interventions
 - Defibrillators, valve surgery, meds, CRT
 - Timing of interventions

Assessing function of the LV pump

Myocardial deformation

- Vcf
- Isovolumic acceleration
- dP/dt
- Tissue Doppler
- Strain
- Strain rate
- Torsion
- Twist

Volume change

- Shortening fraction
- Stroke volume
- LVEF
- Stroke work
- Elastance
 - End systolic pressure-volume relation

Quantitation of global LV systolic function: how?

Isovolumic indices

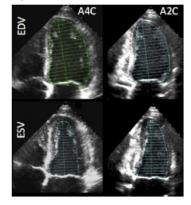
- dP / dt
- E_{max}

Ejection phase indices

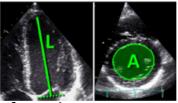
- Area change
- Myocardial Performance Index (MPI, Tei index)
- Fractional shortening
- Velocity of circumferential fiber shortening (Vcf)
- LV EF

Assessing global systolic function by LV EF

- Has flaws but most commonly used measure
- Qualitative
 - Internal check
- Single dimension
 - Obsolete
- Volumetric
 - Simpson's Rule Method / Method of Discs
 - 2/3 Area length
 - When apical endocardium can't be traced
 - Three dimensional



ASE Best Practice: LVEF should be calculated from LV volumes


Volumes.

Volume measurements are usually based on tracings of the bloodtissue interface in the apical four- and twochamber views. At the mitral valve level, the contour is closed by connecting the two opposite sections of the mitral ring with a straight line. LV length is defined as the distance between the middle of this line and the most distant point of the LV contour.

Biplane disk summation

MOD – trace interface between compacted and noncompacted myocardium

- Corrects for shape distortions
- Less geometrical assumptions compared with linear dimensions

Partial correction for

shape distortion

Single plane ok if no WMA

- Apex frequently foreshortened
- · Endocardial dropout
- Blind to shape distortions not visualized in the apical two- and four-chamber planes

- Apex frequently foreshortened
 - Heavily based on geometrical assumptions
 - Limited published data on normal population

MASSACHUSETTS GENERAL HOSPITAL

Corrigan Minehan Heart Center

Lang et al, JASE 2015;28:1-39

Lang et al, JASE 2015;28:1-39

- LVEF from 2D volumes
 - < 52% for men abnormal</p>
 - < 54% women abnormal</p>

Pitfalls of 2D LVEF

- 2D LVEF from biplane method of discs (MOD) or area length (AL) is a reasonable screen for relative degrees of dysfunction
 - AL assumes a geometric shape of the LV
 - MOD assumes elliptical shape of each disc
 - MOD requires accurate delineation of endocardial borders
 - MOD over-weights the size and motion of the LV from 2 apical views
- 2D LVEF may have reduced accuracy in remodeled LV, states with abnormal septal motion, focal RWMA, foreshortened LV
- Solutions
 - Ultrasound Enhancing Agents (aka Contrast)
 - 3D LV echo

Enhancements to 2D LV volume measurement

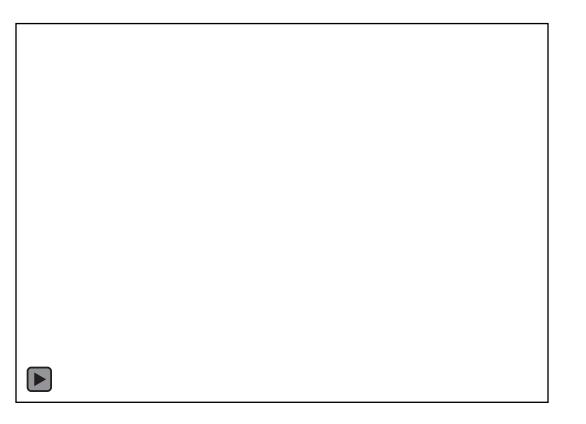
• Contrast agents (aka ultrasound enhancing agents UEA)

and the second sec

Parameter and method	Technique	Advantages	Limitations	
	Endocardial border enhancement	 Helpful in patients with suboptimal acoustic window Provides volumes that are closer to those measured with cardiac magnetic resonance 	 Same limitations as the above non- contrast 2D techniques Acoustic shadowing in LV basal segments with excess contrast 	Lang et al, JASE 2015;28:1-39

- Many studies have documented beneficial effect of UEA on early outcomes in critically ill patients and cost effectiveness in those with suboptimal windows
- Appropriate use criteria
 - 2 or more contiguous segments not seen on noncontrast images

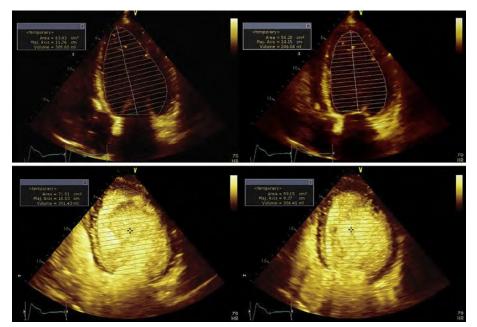
- Very low mechanical index imaging (MI < 0.2) RECOMMENDED
 - Non linear acoustic signal differentiated from tissue
 - High spatial and good temporal resolution
 - LVEF and RWMA
- Low MI (<0.3)
 - Harmonic techniques
- Intermediate MI (0.3-0.5)
 - Harmonic techniques
 - More destruction of microbubbles and swirling artifacts
 - Same problem with high MI (>0.5)



Value of contrast – 2018 ASE guidelines Porter et al, JASE 2018;31:241-74

- Details on agents
- Details on settings for various machines
- Details on indications
- Practical tips

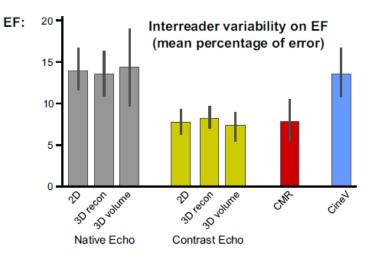
Manufacturer	Platform and portability*	Location and name of enhanced imaging software on front end	High-MI "flash" impulse location on front end	Specific pulse sequence scheme used (dominant nonlinear activity detected)	Frequency/MI recommended for VLMI imaging
Philips	iE33 Not portable	Contrast key On/off LVO and low-MI choices	Touch screen/ flash label	Amplitude modulation and pulse inversion (fundamental and harmonic)	<2.0 MHz/MI < 0.2 (GEN or PEN setting)
Philips	Epiq Not portable	Contrast key On/off Low-MI and LVO choices	Touch screen/ flash label	Amplitude modulation and pulse inversion (fundamental and harmonic)	<2.0 MHz/MI < 0.2 (GEN or PEN setting)
Philips	CX50 Portable	Contrast key On/off LVO choice	Control panel	Amplitude modulation (harmonic)	<2.0 MHz/MI < 0.3
GE	Vivid E95 Not portable	Advanced contrast option	Touch screen/ flash label	Pulse inversion 1.5/3.0 and 1.6/3.2 MHz and 1.7/ 3.4 MHz (harmonic) Amplitude modulation 2.1 and 2.4 MHz (fundamental and harmonic)	1.5–1.7 MHz/MI < 0.2 2.1–2.4 MHz/MI < 0.2
Siemens	SC2000 Not portable		Not available; need to use "color Doppler" knob	Pulse inversion and alternating polarity/amplitude (fundamental and harmonic)	2.0 MHz/MI < 0.2
Toshiba	Aplio i900 Not portable	Touch screen/ CHI label	Control panel	Pulse subtraction (amplitude modulation; harmonic)	h3.5/MI < 0.2 (PEN setting)
Toshiba	Aplio 500 Not portable	Touch screen/ low label	Touch screen/ flash label	Pulse subtraction (amplitude modulation; harmonic)	h2.8-h3.6/MI < 0.2
Esaote	MyLabEight Not portable	Contrast key On/off LVO choice	Touch screen/ flash label	Phase cancellation	PEN frequency/MI < 0.2
Esaote	MyLabSeven Not portable	Contrast key On/off LVO choice	Touch screen/ flash label	Phase cancellation	1.5 MHz/MI < 0.2
Esaote	MyLabAlpha Portable	Contrast key On/off LVO choice	Touch screen/ flash label	Contrast tuned imaging	1.5 MHz/MI < 0.2


Where to end tracing; where is the MV annulus?

Contrast for LV systolic function - volumes

- Contrast enhanced LV volumes will be larger than unenhanced
 - Less foreshortening
 - Better delineation of the border between non-compacted and compacted myocardium
- Larger ULN for LV volume
 - EDV
 - Women 81 ml/sq m
 - Men 98 ml/sq m
 - Better agreement with CMR

Porter et al, JASE 2018;31:241-74



MASSACHUSETTS GENERAL HOSPITAL

Corrigan Minehan Heart Center

Contrast for LVEF

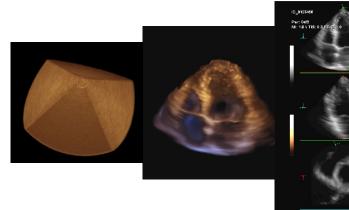
- Improved accuracy (CMR gold standard)
- Reduced interobserver variability
- Therefore, value when precise quantification of LVEF required
 - Defibrillator, CRT, Chemotherapy follow up, valve disease intervention timing

Hoffmann et al, JASE 2014;27:292-301

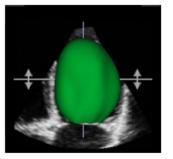
Routine use of contrast on admission TTE for heart failure reduces rate of repeat echoes Lee et al JASE 2021;34:1253-61

- 9,115 HF admissions over 4 year period
 - 5,600 UEA on 1st TTE, 3,515 no UEA
 - 104 repeat TTEs during hospital stay considered unjustified
 - 77% were in the no contrast 1st TTE
 - As rate of contrast increased over 4 year period
 - » Unjustified TTE rate decreased
 - Use of contrast associated with reduced LOS

Overcoming barriers to use


- IV placement
 - Various models
 - Sonographers place IV
 - Echo lab nurse for IV
- Should we use contrast for all LVEF assessments even when image quality is optimal ?
 - Benefit Study

3D echo for volume and EF



Heart Center

Enhancements to LV volume measurement

3D data sets

- No geometrical assumption
- Unaffected by foreshortening
- More accurate and reproducible compared to other imaging modalities

- Lower temporal resolution
- Less published data on normal values
- Image quality dependent

3D normal values

Volumes larger than 2D

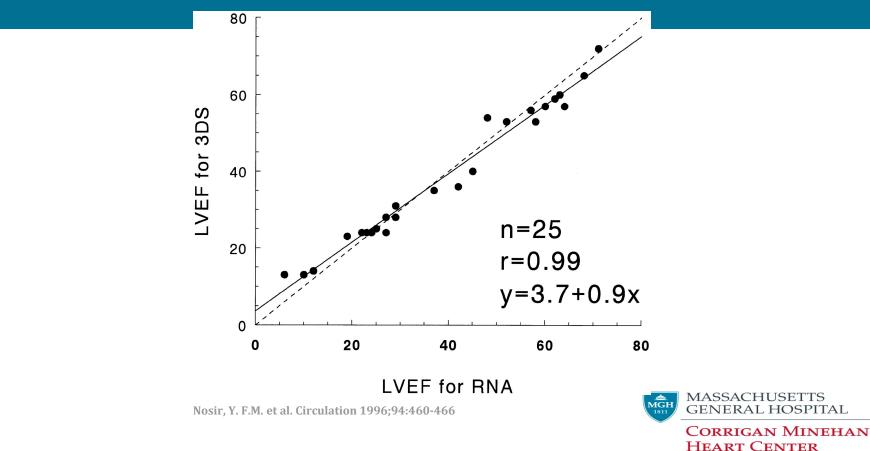

• EF range different

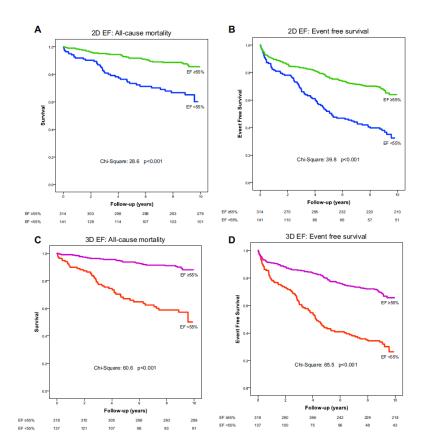
Table 3 Normal values for LV parameters obtained with 3DE

	Aune et al. (2010)	Fukuda <i>et al.</i> (2012)	Chahal et al. (2012)	Muraru et al. (2013)
Number of subjects	166	410	978	226
Ethnic makeup of population	Scandinavian	Japanese	51% European white, 49% Asian Indian	White European
EDVi (mL/m ²)				
Men, mean (LLN, ULN)	66 (46, 86)	50 (26, 74)	White: 49 (31, 67); Indian: 41 (23, 59)	63 (41, 85)
Women, mean (LLN, ULN)	58 (42, 74)	46 (28, 64)	White: 42 (26, 58); Indian: 39 (23, 55)	56 (40, 78)
ESVi (mL/m ²)				
Men, mean (LLN, ULN)	29 (17, 41)	19 (9, 29)	White: 19 (9, 29); Indian: 16 (6, 26)	24 (14, 34)
Women, mean (LLN, ULN)	23 (13, 33)	17 (9, 25)	White: 16 (8, 24); Indian: 15 (7, 23)	20 (12, 28)
EF (%)	\frown			
Men, mean (LLN, ULN)	57 (49, 65)	61 (53, 69)	White: 61 (49, 73); Indian: 62 (52, 72)	62 (54, 70)
Women, mean (LLN, ULN)	61 (49, 73)	63 (55, 71)	White: 62 (52, 72); Indian: 62 (52, 72)	65 (57, 73)

Linear regression of LVEF in all patients, measured by 3D echocardiography by Simpson's method (3DS) vs radionuclide angiography (RNA)

Accuracy of 3D echo for LV volume

- function of image quality:
 - the number of elements in the matrix array transducer
 - the voxel size
 - the spatial resolution of the image
 - Temporal resolution



Challenges to using 3D LVEF in clinical practice

- Since normal range is different than 2D how do you deal with teaching your referring clinicians how they should interpret the different tests
 - An LVEF of 50% on 3D is normal but if the MD is used to the 2D range they may think of it as abnormal

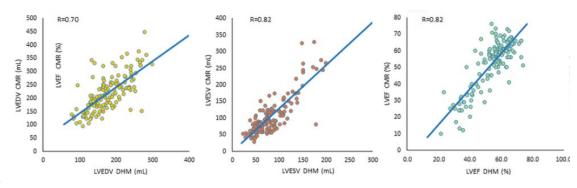
3D EF stronger association with outcomes than those from 2D Stanton et al, JASE 2014;27:65-73

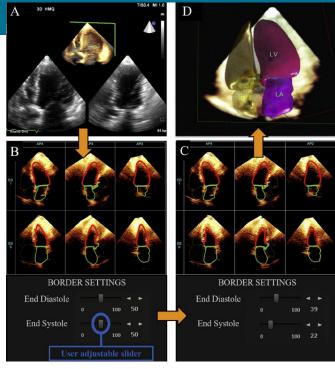
HEART CENTER

Automated 3D echo LVEF performance

Spitzer et al. Cardiac Failure Review 2017;3:97-101

Table 1: Comparisons Among Fully Automated 3D Methods and Either Cardiac Magnetic Resonance or Manual Echocardiography


Authors	Reference	Software	n	Feasibility	LVEDV bias (ml)	LVESV bias (ml)	LVEF bias (%)
Thavendiranathan, et al., 2012¹⁵ (I)	CMR	eSie LVA™ (Siemans Healthcare)	101	66 %	-18 ± 54	-10 ± 36	-0 ± 6
Thavendiranathan, et al., 2012 ¹⁵ (II)*	2D Simpson	eSie LVA	27	89 %	2 ± 16	4 ± 13	-2 ± 4
Ren, et al., 201419	Manual 3D	eSie LVA	48	85 %	-3 ± 23	-2 ± 14	-0 ± 9
Otani, et al., 2016 ^{31,*}	2D Simpson	HeartModel (Philips Healthcare)	10	100 %	-3 ± 26	-1 ± 17	-0 ± 10
Tsang, et al., 2016 ³⁰ (I)	CMR	HeartModel	69	94 %	2 ± 40	10 ± 40	-6 ± 16
Tsang, et al., 2016 ³⁰ (II)	Manual 3D	HeartModel	104	90 %	-24 ± 50	-13 ± 58	-2 ± 18
Spitzer, et al., 2017 ³²	Manual 3D	HeartModel	72	93 %	-6 ± 39	-2 ± 39	-1 ± 15
Levy, et al., 201733	CMR	HeartModel	63	86 %	-22 ± 34	-13 ± 33	-1 ± 7
Medvedofsky, et al., 2017 ^{34,†}	Manual 3D	HeartModel	180	100 %	-14 ± 20	-6 ± 16	-2 ± 7
Medvedofsky, et al., 2017 ^{34,†,‡}	Manual 3D	HeartModel	300	66 %	-3 ± 22	1 ± 16	0 ± 10


*Atrial fibrillation; †Including patients with arrhythmias; ‡Consecutive patients. I and II describe two reference modalities used in a single report. CMR = cardiac magnetic resonance; LVA = left ventricle analysis; LVEDV = left ventricle end-diastolic volume; LVEF = left ventricle ejection fraction; LVESV = left ventricle end-systolic volume.

Automated machine learning-based 3D quantification of LV volume and function *Italiano et al, DOI* <u>10.21203/rs.3.rs-355587/v1</u>

- Automated LV border detection and surface rendering
 - Based on library of shape descriptions of the LV optimally place the contours
- 600 unselected patients (12% AF)
 - 140 with CMR
 - 88% feasibility
 - 64% accurate borders (9% major border corrections required)
 - Small LVs, distorted shapes

Tamborini et al JASE 2017;30:1049-58

MASSACHUSETTS GENERAL HOSPITAL

Corrigan Minehan Heart Center

Contrast for 2D LVEF

- MASSACHUSETTS GENERAL HOSPITAL CORRIGAN MINEHAN HEART CENTER
- When endocardial border not delineated on 2 or more contiguous segments
- LV volumes will be larger than unenhanced LV images
 EFs are equivalent
- Patience and practice required to identify mitral annular plane for biplane method of disc tracings
- Of particular benefit when precise LV volumes or EF are needed for serial assessment and clinical decision making

3D for LV systolic function:

- Limitations
 - Image quality
 - Rhythm (use single beat capture)
 - Lower temporal resolution than 2D
 - Less published data for normal values
- Advantages
 - Better precision than 2D especially in asymmetric LVs
 - Can pick up subtle differences on serial studies
 - Follow course of a disease
- BENEFITS OUTWEIGH LIMITATIONS

Thank you

 THE PARTY

I TATAL

10.6

100

