

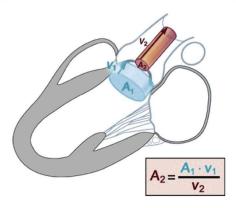
Quantification of Stenosis: Avoid these Pitfalls

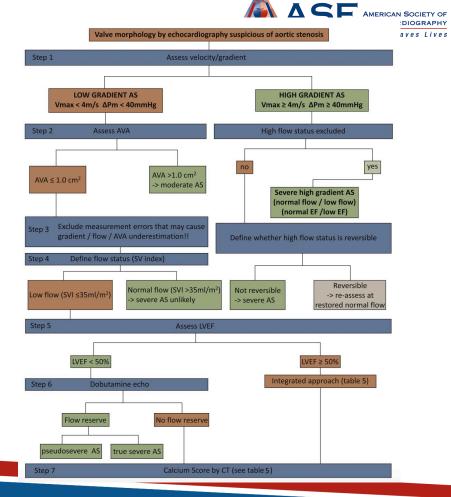
Wendy Tsang, MD, SM Assistant Professor, University of Toronto Toronto General Hospital – University Health Network

Disclosures

Research support:

- Heart and Stroke Foundation of Canada
- Canadian Cardiovascular Society/BMS Pfizer Atrial Fibrillation Research Award
- PMCC Innovation Award
- MSH UHN AMO Innovation Award
- Tiffin Trust
- Philips Healthcare
- Siemens
- Salary Support:
 - Heart and Stroke Foundation of Canada National New Investigator Award
- Honoraria:
 - UptoDate

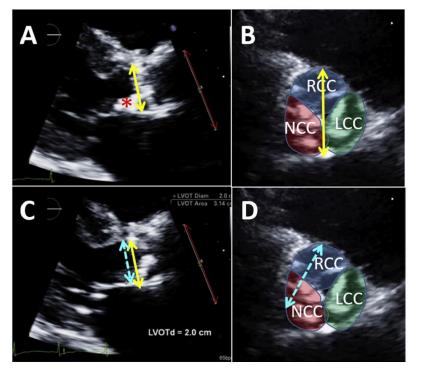

Objectives

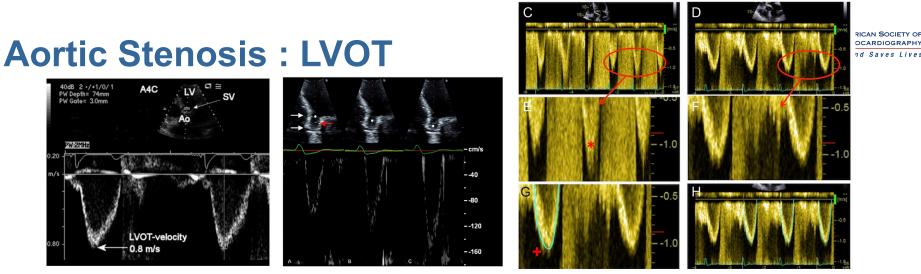


- To review challenges in assessing aortic stenosis
- To discuss differences in assess mitral stenosis from rheumatic heart disease compared with mitral annular calcium
- To demonstrate the value of off-axis views to assess for pulmonic stenosis

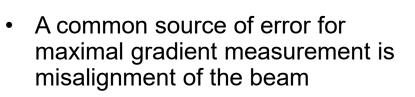
Aortic Stenosis

Recommendations on the Echocardiographic Assessment of Aortic Valve Stenosis: A Focused Update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography



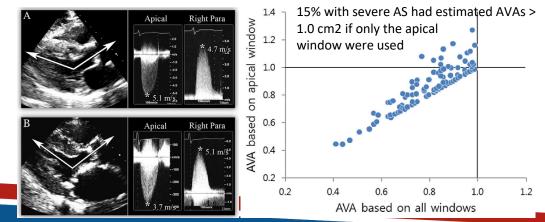

Baumgartner et al. J Am Soc Echocardiogr 2017;30:372-92

Aortic Stenosis : LVOT



- Greatest potential for error in the calculation of AVA by the continuity equation is LVOT diameter, which must be squared to calculate LVOT area
- Use the mid systolic image that bisects the largest dimension
- If 2 leaflets are well seen, this may not be the optimal plane
- Measure at the annulus and exclude calcium if present
- AVA is <1.0 cm2 and indexed AVA is <0.6 cm2/m2 but DVI is >0.25, suspect underestimation of LVOT dimension

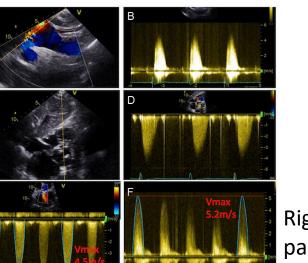
- LVOT measurement is overestimated, overestimating AVA
- When a smooth velocity curve can be obtained at the aortic annulus, this site is preferred for LVOT measurement
- Flow acceleration at the annulus level may occur so that it may be necessary to move the sample volume apically by 0.5–1.0 cm to obtain a laminar flow curve without spectral dispersion
- Applies to prosthetic valves


Aortic Stenosis : Maximal Gradient

- CW Doppler assessment of AS peak jet velocity should be obtained in multiple views
- A dedicated small dual-crystal CWD transducer should also be used

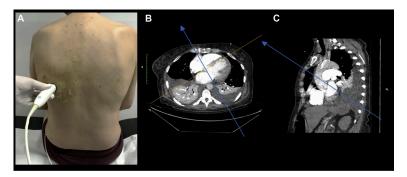
Window	All patients	Aortic root < 115°	Aortic root $\ge 115^{\circ}$	Р
N	100	31	69	_
Apical	39 (39%)	6 (19%)	33 (48%)	.005
RPS	50 (50%)	20 (65%)	30 (43%)	.05
SSN	6 (6%)	2 (6%)	4 (6%)	1.00
RSC	5 (5%)	3 (10%)	2 (3%)	.17

RSC, Right supraclavicular; SSN, suprasternal notch.



Thaden et al. J Am Soc Echocardiogr 2015;28:780-5

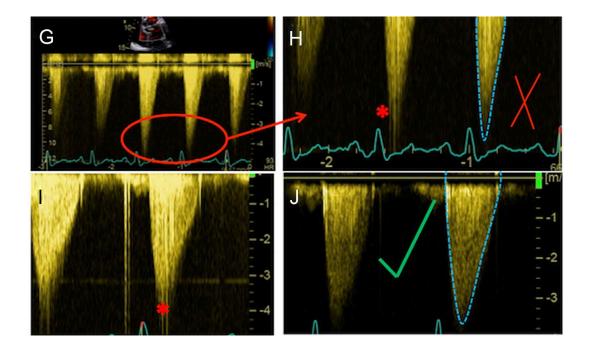
Aortic Stenosis : Maximal Gradients



Suprasternal D Subcostal Apical 5 Apical 3

Right parasternal

Left Posterior Thoracic Acoustic Window: A Forgotten **Approach for Aortic Stenosis Assessment**

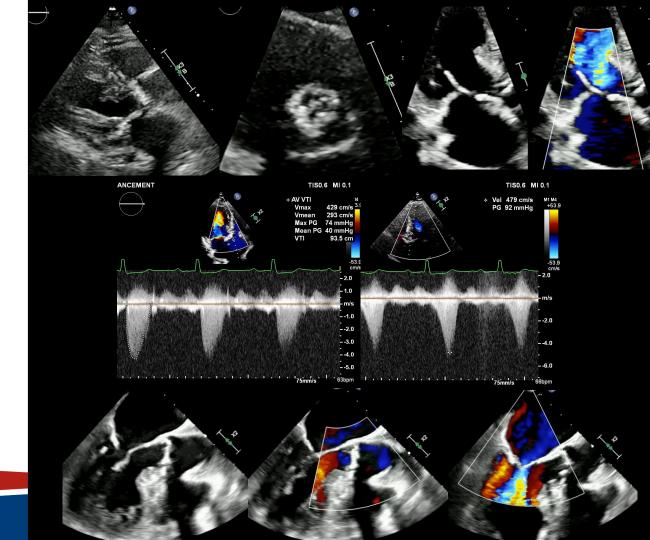


Ring L, et al. https://doi.org/10.1530/ERP-20-0035

Giannakopoulos G et al. https://doi.org/10.1016/j.cjco.2021.01.015

Aortic Stenosis : Maximal Gradients

- Don't measure the dispersion as it overestimates the gradients
- Optimize the Doppler signal and trace the dense portion

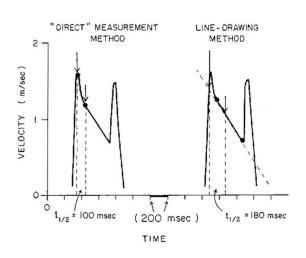


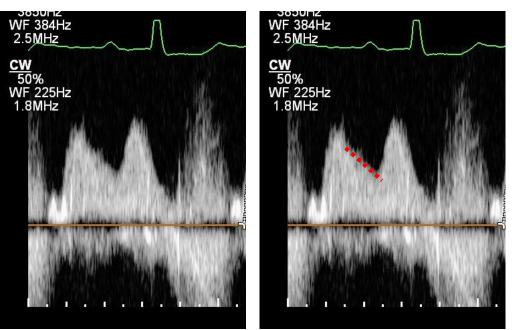
When considering low flow, low gradient AS with preserved ejection fraction, important to exclude:

- Measurement errors
 - underestimation of LVOT area \rightarrow flow
- Severe hypertension during examination.
- Inconsistency between AVA and velocity/gradient cut-offs in the range of [sep]AVAs between 0.8 and 1.0 cm²
- Clinically moderate AS (despite an AVA < 1.0 cm2) in a patient with small body size.

Aortic Stenosis : Other causes

- Recognition of multiple AS mechanisms
- Evaluate Doppler profile


Aortic Stenosis : Other pitfalls*

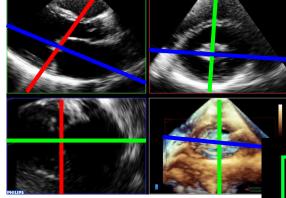


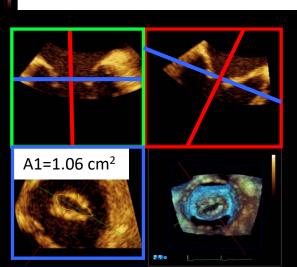
	Impact	AS assessment
Hypertension	 Can lead to under- or over- estimation of AS severity 	 Re-evaluate AS when BP<140 mmHg
Aortic regurgitation	 Increase transvalvular flow and gradients AVA is not a reliable predictor of outcomes 	 Use DI Some recommend max velocity
Mitral regurgitation	 AV Vmax and mean gradient may underestimate AS severity 	• Use AVA
Mitral stenosis	 Low AS gradients underestimating severity 	• Use AVA

*cardiac amyloid

- PHT should be obtained from the second part of slope
- Heart rate affects diastolic filling so should report HR with measured gradients

		Rheumatic MS 🗧	MAC MS	
		Rheumatic	MAC	
120	Morphology	 Funnel shape stenosis from fusion of the commissures with the greatest narrowing at the leaflet tips 	 Tubular shape as it primarily involved the annulus and base of the leaflets 	120
	Stenosis	True leaflet impedence	Minimal valvular	80
Rheumatic mitral stenosis	Hemodynamics	 Blunted LA y descent Persistent diastolic separation of LA and LV pressures Normal LV EDP 	 High LA v wave Rapid y descent coupled with rapid equilibration of the LA-LV pressure gradient after MV opening Elevated LV EDP 	60 40 20 0 MAC mitral stenosis


Reddy et al. Circulation. 2019;140:523–525. DOI: 10.1161/CIRCULATIONAHA.11



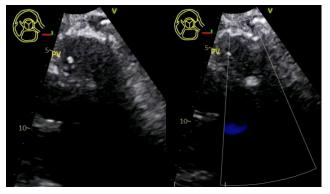
Parameter	Rheumatic	MAC
Transmitral gradient (TMG)	 Elevated Specific for severe MS Predicts symptom improvement with intervention 	 Comorbidities (HFpEF, LV diastolic dysfunction) can cause a large LA v wave from abnormal AV coupling and poor LA compliance. This increases the initial TMG, which with moderate stenosis results in a high MG overestimating valve obstruction severity LA and MR could also increase v wave and early diastolic gradient without true stenosis.

Reddy et al. Circulation. 2019;140:523–525. DOI: 10.1161/CIRCULATIONAHA.119.040095

MVA

- Reliable in rheumatic MS because there is little calcification
- Less reliable in MAC

Parameter	MAC
MVA by pressure half- time (PHT)	 Reduced LV compliance in this patient population may decrease PHT overestimating MVA with Hatle formula (220/PHT)
MVA by Continuity Equation	 Preferred method to obtain MVA VTI at the mitral inflow tract and LVOT are measured during different cardiac cycles Problematic if AF present LVOT measurement challenging with calcium and changes shape
Dimensionless index (DI)	 DI of 0.35 to 0.50 is consistent with severe calcific MS (MVA < 1.5 cm2) DI < 0.35 suggests very severe calcific MS Needs to be validated
LVOT TVI Valve DI = Mitral valve	Silbiger J Am Soc Echocardiogr 2021;34:5

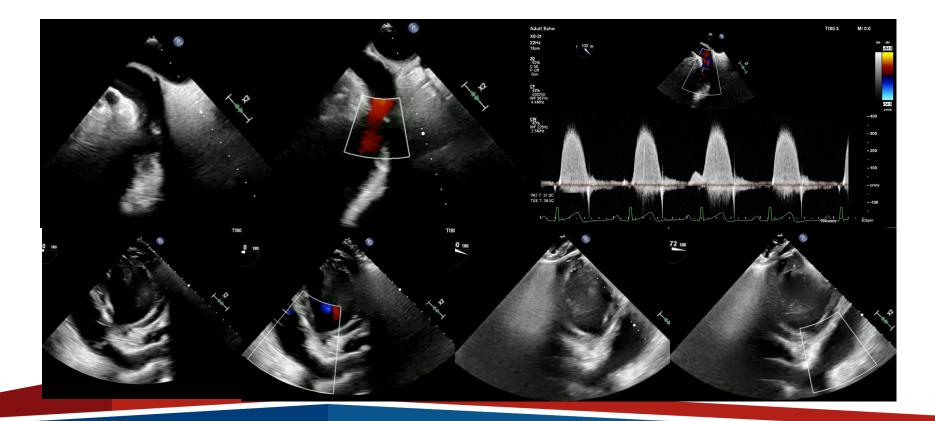

To avoid overestimated MAC stenosis severity if there is an elevated TMG

- 1. Examine the contour of the transmitral flow velocity curve
- Rheumatic slow fall in velocity because of valvular impedance to passive flow and equal E and A velocities
- MAC high initial E velocity, a rapid fall in velocity, and a high E:A ratio

2. Cath to determine absolute LA and LV pressures, contour of v wave and y descent, response to exercise or nitroprusside



Pulmonic Stenosis


4.16 m/s

- Gradients are often
 underestimated
- Through interrogation with off-axis planes

Pulmonic Stenosis – Other TEE views

Summary

- LVOT Doppler location and contour should be examined to ensure it is not overestimated
- AS gradients should be assessed using multiple windows with the blind probe
- Rheumatic MS morphology differs from MAC related stenosis affecting valve hemodynamics making transvalvular gradients less reliable
- MAC MVA best assessed using continuity although there are limitations
- DI hold promise for MAC stenosis assessment
- Off-axis imaging windows should be used to assess PS

Thank you for listening!