

Sound Saves Lives

A Systematic Approach to Multivalvular Disease

James D. Thomas, MD, FACC, FASE Director, Center for Heart Valve Disease Bluhm Cardiovascular Institute Professor of Medicine, Feinberg School of Medicine, Northwestern University Chicago, Illinois

Conflicts of interest: GE, Abbott, Edwards, Caption Health (honoraria and spouse employment)

Considerations in management of multivalvular disease

- Net clinical effect of multiple valvular lesions
- Challenges in grading severity of each lesion by echocardiography
- Treatment strategies

Case Discussions

Case 1: AS + MR 91M in CHF w/ CAD, CKD, AS, MR,& AF-RVR

- PISA radius = 1.1 cm @ ~40 cm/s
- EROA = 0.49 cm^2
- Regurgitant Volume 78 mL
- Systolic flow reversal noted in pulmonary veins
- <u>Severe MR</u>

AS

Incidence and Etiology of Multivalvular Diseas

ECHOCARDIOGRAPHY Sound Saves Lives

EuroHeart Survey: 14.6% of patients undergoing valve surgery

STS Database: 10.9% of 623,039 patients undergoing valve surgery

>90%

- 57.8%: Aortic + Mitral Valve surgery
- 31.0%: Mitral + Tricuspid Valve surgery
- 3.3%: Aortic + Tricuspid Valve surgery
- 7.9%: Triple valve surgery <u>Primary:</u>
- Rheumatic Heart Disease
- Degenerative Valve Disease

Other Causes:

- Endocarditis
- Radiation
- Drugs (i.e. fen-phen)
- Connective tissue disease
 - Genetic syndromes

Secondary:

Malcoaptation (LV/LA/RV/RA/Ao dilation)

Unger, Philippe, et al. "Pathophysiology and management of multivalvular disease." Nature Reviews Cardiology (2016).

By this Valvular Lesion	Impact on this Regurgitant Lesion				
	AR	MR	PR	TR	oc
NS	Little impact, although hemodynamically significant AR will increase AS gradient. For CMR: phase-contrast plane better in LVOT	For constant ROA, RVol increases in proportion to square root of excess pressure; jet area exaggerated beyond this. ROA may increase if LV dilates.	Little impact unless PH ensues.	Little impact unless PH ensues.	OG es
AR	NA	LV dilation may increase ROA (especially in secondary MR). Mixed regurgitant lesions render volumetric methods challenging, as one must find some location reflective of net forward flow (e.g., RVOT). For CMR: MV RVoI = LVSV - aortic forward flow; MR Reg fraction = MR RVoI/ (LVSV - AR RVO).	Little impact unless PH ensues.	Little impact unless PH ensues,	
ИS	Little direct impact, although the delayed LV filling might theoretically lengthen AR pressure half-time.	If MV is heavily calcified, may shadow and decrease jet area and appearance of jet.	Lesion most likely to increase PAP and thus worsen RVol and jet area.	Lesion most likely to increase PAP and thus worsen RVol and jet area. If RV dysfunction occurs, may increase ROA.	
ИR	Little direct impact, but mixed regurgitant lesions render volumetric methods challenging, as one must find some location reflective of net forward flow (e.g., RVOT). Rapid early filling may decrease AR pressure half-time	NA	Likely to increase PAP and thus worsen RVol and jet area.	Likely to increase PAP and thus worsen RVol and jet area. If RV dysfunction occurs, may increase ROA.	
25 	Little direct impact	Little direct impact	Little impact, although PR will exacerbate PS gradient. For CMR: phase-contrast plane better in RVOT.	Increased RVSP will worsen RVol and jet area. If RV dysfunction occurs, may increase ROA.	y ;;ill ,- ,- M/
PR	Little direct impact	Little direct impact	NA	Increased RV volume may increase ROA, which will worsen RVol and jet area. For CMR: TV RVol = RVSV - pulmonic forward flow. TR Reg fraction = TR RVol/ (RVSV - PR RVol).	
TS	Little direct impact	Little direct impact	Little direct impact	Little direct impact, although TR will exacerbate TS gradient.	
TR	Little direct impact	Little direct impact	Rapid RV filling from TR may further shorten PR pressure half-time, and color PR jet more brief.	NA	

ASE GUIDELINES AND STANDARDS

Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation

A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance

 William A. Zoghbi, MD, FASE (Chair), David Adams, RCS, RDCS, FASE, Robert O. Bonow, MD, Maurice Enriquez-Sarano, MD, Elyse Foster, MD, FASE, Paul A. Grayburn, MD, FASE,
 Rebecca T. Hahn, MD, FASE, Yuchi Han, MD, MMSc,* Judy Hung, MD, FASE, Roberto M. Lang, MD, FASE,
 Stephen H. Little, MD, FASE, Dipan J. Shah, MD, MMSc,* Stanton Shernan, MD, FASE,
 Paaladinesh Thavendiranathan, MD, MSc, FASE,* James D. Thomas, MD, FASE, and
 Neil J. Weissman, MD, FASE, Houston and Dallas, Texas, Durham, North Carolina; Chicago, Illinois; Rochester,
 Minnesota; San Francisco, California; New York, New York; Philadelphia, Pennsylvania; Boston, Massachusetts;
 Toronto, Ontario, Canada; and Washington, DC

Zoghbi et al. JASE 2017; 40: 303-371

AS, Aortic stenosis; MS, mitral stenosis; NA, not applicable; PAP, pulmonary artery pressure; PH, pulmonary hypertension; PS, pulmonic stenosis; Reg, regurgitant; ROA, regurgitant orflice area; RVSP, right ventricular systolic pressure; TS, tricuspid stenosis. CMR-related considerations are in bold.

Table 17 Impact of multivalvular disease on assessment of valvular regurgitation with Doppler echocardiography and CMR

Thomas *et al.* Circulation 1990; 81: 247-259 http://www.cvphysiology.com/Heart%20Disease/HD004

Low Flow State How does MR affect AS? 75 75 25 LA **Lower Transaortic Pressure Gradient** 200/25 140/25 LV LV **Lower Cardiac** Mitral Regurgitation **Aortic Stenosis** Output

Thomas *et al.* Circulation 1990; 81: 247-259 http://www.cvphysiology.com/Heart%20Disease/HD004

Echo Evaluation

Color Jet Area

Jet size is dependent on jet momentum (M): flow x velocity

- Momentum is conserved throughout the jet
- Flow(Q) = Av
- $M = Qv = Av^2$

Simplified Bernoulli: $\Delta p = 4v^2$

• $v \propto \sqrt{\Delta p}$

 $\therefore Q \propto \sqrt{\Delta p}$ AND $M \propto \Delta p$, if ROA is constant

Jet size increases roughly linearly with Δp , Rvol roughly half as fast

Quantification of Jet Flow by Momentum Analysis

An In Vitro Color Doppler Flow Study Circulation 1990; 81: 247-259

James D. Thomas, MD, Chun-Ming Liu, MD, Frank A. Flachskampf, MD, John P. O'Shea, MB, BS, Ravin Davidoff, MB, BCh, and Arthur E. Weyman, MD

$$JA(M, x_c, u_c) = 2 \int_0^{x_c} \frac{x}{9.7} \left(\ln \frac{7.8\sqrt{M}}{u_c x} \right)^{1/2} dx$$

This integral is expressible in closed form through a series of substitutions. First, let $\xi = u_c x/7.8 \sqrt{M}$ yielding

$$JA = K \int_{0}^{\xi} \xi \sqrt{\ln(1/\xi)} \, d\xi$$

where $K=(2\times7.8^2M)/(9.7u_c^2)=12.5M/u_c^2$ and $\xi_c=u_cx_d/7.8\sqrt{M}$ that ranges from 0 to 1. Next, let $\nu=\sqrt{\ln(1/\xi)}$ yielding

$$JA=2K \int_{\nu_c}^{\infty} \nu^2 e^{-2\nu^2} \,\mathrm{d}\nu$$

where $\nu_{c} = \sqrt{\ln(1/\xi_{c})}$, which ranges from 0 for unconstrained jets to \approx for infinitesimally small receiving chambers. This expression may be integrated by parts (Ju dv=uv-Jv du) with u= ν and dv= $ue^{-J\nu}$ d ν

$$JA = K[\frac{1}{2}\nu_{c}e^{-2\nu_{c}^{2}} + (\sqrt{\pi}/4\sqrt{2}) \operatorname{erfc}(\sqrt{2}\nu_{c})]^{*}$$

Backsubstituting for ν , ξ , and K yields

$$JA(M,x_{c},u_{c}) = \frac{x_{c}^{-2}}{9.7} \left(\ln \frac{7.8\sqrt{M}}{u_{c}x_{c}} \right)^{1/2} + \frac{3.93M}{u_{c}^{-2}} \operatorname{erfc} \left[\sqrt{2} \left(\ln \frac{7.8\sqrt{M}}{u_{c}x_{c}} \right)^{1/2} \right]$$
(A3)

This function is displayed graphically in Figure 7 and discussed in the text.

Momentum: Physical Determinant of Jet Size

Northwestern Medicine[®]

Transmitral Gradient Increased Regurgitant Volume

 Δp : 85⇒175 mmHg (2.06x) Rvol $\hat{1}$'s by $\sqrt{2.06} = 1.43x$ Jet area $\hat{1}$'s by 2.06x

Thomas *et al.* Circulation 1990; 81: 247-259 http://www.cvphysiology.com/Heart%20Disease/HD004

Echo Evaluation

"Cardiac Valves." Thoracic Key. N.p., 04 June 2016. Web. 12 May 2017. https://thoracickey.com/cardiac-valves/.

Treatment Strategy for Nonsurgical Candidates ASE AMERICAN SOCIETY OF Sound Saves Lives Staged vs. Simultaneous

Always fix AS first

• May result in cardiac decompensation after MV repair in the presence of elevated afterload due to AS

MR reduction in 60% of patients with moderate functional MR after isolated SAVR

MR reduction in 30% of patients after TAVR

LV Dysfunction, Afib, MV annular calcification, left atrial enlargement associated with MR progression

Therefore, TAVR + maximal medical therapy

• Reassess and consider MitraClip if still severe, symptomatic MR

No increased risk or technical complexity of MitraClip in the presence of prior TAVR (assuming no distortion of the MV annulus)

Simultaneous treatment has been described – consider in primary MR unlikely to recover significantly (may be tough to get paid for both!)

Kische, Stephan, et al. "Staged total percutaneous treatment of aortic valve pathology and mitral regurgitation: institutional experience." Catheterization and Cardiovascular Interventions 82.4 (2013): E552-E563.

Case 1 Treatment: TAVR first with #34 Evolut

Trivial AR

JPEG

Very mild paravalvular AR

FR 22Hz

13cm

2D 49% C 50 P Low

IPen

66% 2.5MHz

WF High

P R 1.4 2.8

Med

2 Month Follow Up Improved but still persistent Class 2 sx

 $MR EROA = 0.4 \text{ cm}^2$

Mitral Regurgitant Volume = 61 mL

Mitral Mean Grad = 3 mmHg (HR 72)

Continued severe organic MR

MitraClip: 2 clips on A2-P2

<u>Final Result:</u> Trivial MR

Mean MV gradient = 4 mmHg (HR 50)

1 Month Follow Up

Vmax = 2.1 m/sMean AV gradient = 9 mmHg $AVA = 1.23 \text{ cm}^2$

Trivial to mild MR Mean MV gradient = 4 mmHg (HR 61)

Climbed Kilimanjaro the next summer!

OK, that's a lie, but he was Class 1, riding a stationary bike daily

Case 2 84 yo woman with MR + AR and heart failure

- Normal LV Ejection Fraction
- Severely Dilated LA and LV

Severely prolapsed vs. flail posterior leaflet with severe MR

AR

Difficult to quantify but short P1/2t suggests severe

Multivalvular Disease

Same questions!

What is the net clinical effect of multiple valvular lesions? How do we grade severity of each lesion? What is the optimal treatment strategy?

AR and MR Clinical Impact – Severe Volume Overload

Very Poorly tolerated

Post-operatively:

- High incidence of LV Dysfunction
- Reduced survival
- Often persistent symptoms

LV dilation \Rightarrow increased mitral ROA

Adapted from Katz, Physiology of the Heart (3rd ed), 2001

By this Valvular Lesion	AR	MR	PB	TR
-				
5	Little impact, although hemodynamically significant AR will increase AS gradient. For CMR: phase-contrast plane better in LVOT	For constant ROA, RVol increases in proportion to square root of excess pressure; jet area exaggerated beyond this. ROA may increase if LV dilates.	Little impact unless PH ensues.	Little impact unless PH ensues.
	NA	LV dilation may increase ROA (especially in secondary MR). Mixed regurgitant lesions render volumetric methods challenging, as one must find some location reflective of net forward flow (e.g., RVOT). For CMR: MV RVol = LVSV - aortic forward flow; MR Reg fraction = MR RVol/ (LVSV - AR Rvol).	Little impact unless PH ensues.	Little impact unless PH ensues.
5	Little direct impact, although the delayed LV filling might theoretically lengthen AR pressure half-time.	If MV is heavily calcified, may shadow and decrease jet area and appearance of jet.	Lesion most likely to increase PAP and thus worsen RVol and jet area.	Lesion most likely to increase PAP and thus worsen RVol and jet area. If RV dysfunction occurs, may increase ROA.
8	Little direct impact, but mixed regurgitant lesions render volumetric methods challenging, as one must find some location reflective of net forward flow (e.g., RVOT). Rapid early filling may decrease AR pressure halt-time	NA	Likely to increase PAP and thus worsen RVol and jet area.	Likely to increase PAP and thus worsen RVol and jet area. If RV dysfunction occurs, may increase ROA.
1	Little direct impact	Little direct impact	Little impact, although PR will exacerbate PS gradient. For CMR: phase-contrast plane better in RVOT.	Increased RVSP will worsen RVol and jet area. If RV dysfunction occurs, may increase ROA.
R	Little direct impact	Little direct impact	NA	Increased RV volume may increase ROA, which will worsen RVol and jet area. For CMR: TV RVol = RVSV- pulmonic forward flow. TR Reg fraction = TR RVol/ (RVSV - PR RVol).
S	Little direct impact	Little direct impact	Little direct impact	Little direct impact, although TR will exacerbate TS gradient.
R	Little direct impact	Little direct impact	Rapid RV filling from TR may further shorten PR pressure half-time, and color PR jet more brief.	NA

ASE GUIDELINES AND STANDARDS

Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation

A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance

 William A. Zoghbi, MD, FASE (Chair), David Adams, RCS, RDCS, FASE, Robert O. Bonow, MD, Maurice Enriquez-Sarano, MD, Elyse Foster, MD, FASE, Paul A. Grayburn, MD, FASE,
 Rebecca T. Hahn, MD, FASE, Yuchi Han, MD, MMSc,* Judy Hung, MD, FASE, Roberto M. Lang, MD, FASE, Stephen H. Little, MD, FASE, Dipan J. Shah, MD, MMSc,* Stanton Shernan, MD, FASE, Paaladinesh Thavendiranathan, MD, MSc, FASE,* James D. Thomas, MD, FASE, and
 Neil J. Weissman, MD, FASE, Houston and Dallas, Texas; Durbam, North Carolina; Chicago, Illinois; Rochester, Minnesota; San Francisco, California; New York; Pbiladelphia, Pennsylvania; Boston, Massachusetts; Toronto, Ontario, Canada; and Washington, DC

> AS, Aortic stenosis; MS, mitral stenosis; NA, not applicable; PAP, pulmonary artery pressure; PH, pulmonary hypertension; PS, pulmonic stenosis; Reg, regurgitant; ROA, regurgitant orfifce area; RVSP, right ventricular systolic pressure; TS, tricuspid stenosis. CMR-related considerations are in bold.

Table 17 Impact of multivalvular disease on assessment of valvular regurgitation with Doppler echocardiography and CMR

AR and MR

Volumetric Methods

Reference Stroke Volume: LV Outflow **Mitral Annulus** Early Systole Mid Diastole **Annular Diameter** Velocity- PW SV_{LVOT} = CSA_{LVOT} * VTI_{LVOT} SV_{MV} = CSA_{MV} * VTI_{MV} = 0.785 * d²_{LVOT} * VTI_{LVOT} = 0.785 * d²_{MV} * VTI_{MV}

 SV_{RVOT} can be used Direct measurement of forward and reverse flow by CMR

Zoghbi, William A., et al. "Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation." *Journal of the American Society of Echocardiography* 30.4 (2017): 303-371.

Echo Evaluation

PISA Radius = 2 cm ERO = 1.6 cm^2

Regurgitant Volume = 167 ml

Systolic flow reversal noted in pulmonary veins

Excellent example of PISA overestimation due to proximal constraint

Solution: estimate constraint (~50%) or use higher aliasing velocity

Regardless, it's

Severe MR

AR and MR

Mitral inflow very high E wave

Severe MR shortens AV PHT so overestimates severity of AR

Short AR Pressure Half-Time

Flail P2

Less flow constraint at higher v_a

AR is only mild to moderate

MitraClip Procedure Performed

Two clips placed on A2-P2

Mild MR w/ mean Δp 6 mmHg @ HR 113

1 Month Follow Up

Symptoms improved; no need to intervene on the AR

Case 3 88 yo man w/ severe MR and TR ASE AMERICAN SOCIETY OF Sound Saves Lives

s/p remote CABG, previously active, now progressive DOE and edema

Severe TR, severely dilated RV and RA

Sound Saves Lives

Echo

Severe MR – 2 jets (big A1-P1, smaller A3-P3), EROA 0.5 cm²

By this Valvular Lesion	Impact on this Regurgitant Lesion AR MR PR TR					
		For constant ROA, RVol			OCIET	
AS	Little impact, although hemodynamically significant AR will increase AS gradient. For CMR: phase-contrast plane better in LVOT	For constant NOA, HVol increases in proportion to square root of excess pressure; jet area exaggerated beyond this. ROA may increase if LV dilates.	Little impact unless PH ensues.	Little impact unless PH ensues.	es Li	
AR	NA	LV dilation may increase ROA (especially in secondary MR). Mixed regurgitant lesions render volumetric methods challenging, as one must find some location reflective of net forward flow (e.g., RVOT). For CMR: MV RVoI = LVSV - aortic forward flow; MR Reg fraction = MR RVoI/ (LVSV - AR RVOI).	Little impact unless PH ensues.	Little impact unless PH ensues.		
MS	Little direct impact, although the delayed LV filling might theoretically lengthen AR pressure half-time.	If MV is heavily calcified, may shadow and decrease jet area and appearance of jet.	Lesion most likely to increase PAP and thus worsen RVol and jet area.	Lesion most likely to increase PAP and thus worsen RVol and jet area. If RV dysfunction occurs, may increase ROA.		
μR	Little direct impact, but mixed regurgitant lesions render volumetric methods challenging, as one must find some location reflective of net forward flow (e.g., RVOT). Rapid early filling may decrease AR pressure half-time	NA	Likely to increase PAP and thus worsen RVol and jet area.	Likely to increase PAP and thus worsen RVol and jet area. If RV dysfunction occurs, may increase ROA.		
*5	Little direct impact	Little direct impact	Little impact, although PR will exacerbate PS gradient. For CMR: phase-contrast plane better in RVOT.	Increased RVSP will worsen RVol and jet area. If RV dysfunction occurs, may increase ROA.		
28	Little direct impact	Little direct impact	NA	Increased RV volume may increase ROA, which will worsen RVol and jet area. For CMR: TV RVol = RVSV - pulmonic forward flow. TR Reg fraction = TR RVol/ (RVSV - PR RVol).		
TS	Little direct impact	Little direct impact	Little direct impact	Little direct impact, although TR will exacerbate TS gradient.		
TR	Little direct impact	Little direct impact	Rapid RV filling from TR may further shorten PR pressure half-time, and color PR jet more brief.	NA		

ASE GUIDELINES AND STANDARDS

Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation

A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance

 William A. Zoghbi, MD, FASE (Chair), David Adams, RCS, RDCS, FASE, Robert O. Bonow, MD, Maurice Enriquez-Sarano, MD, Elyse Foster, MD, FASE, Paul A. Grayburn, MD, FASE,
 Rebecca T. Hahn, MD, FASE, Yuchi Han, MD, MMSc,* Judy Hung, MD, FASE, Roberto M. Lang, MD, FASE,
 Stephen H. Little, MD, FASE, Dipan J. Shah, MD, MMSc,* Stanton Shernan, MD, FASE,
 Paaladinesh Thavendiranathan, MD, MSc, FASE,* James D. Thomas, MD, FASE, and
 Neil J. Weissman, MD, FASE, Houston and Dallas, Texas, Durham, North Carolina; Chicago, Illinois; Rochester,
 Minnesota; San Francisco, California; New York, New York; Philadelphia, Pennsylvania; Boston, Massachusetts;
 Toronto, Ontario, Canada; and Washington, DC

> AS, Aortic stenosis; MA, mitral stenosis; NA, not applicable; PAP, pulmonary artery pressure; PH, pulmonary hypertension; PS, pulmonic stenosis; Reg, regurgitant; ROA, regurgitant orfice area; RVSP, right ventricular systolic pressure; TS, tricuspid stenosis. CMR-related considerations are in bold.

Table 17 Impact of multivalvular disease on assessment of valvular regurgitation with Doppler echocardiography and CMR

- 1. <u>Increased</u> <u>Regurgitant Volume</u> for given ROA
- 2. <u>Increased Color Jet</u> <u>Area</u> (out of proportion to increased Regurgitant Volume)
- 3. <u>Increased ROA</u> due to TV annular dilation

http://www.rtmagazine.com/2010/08/pulmonary-hypertension-and-the-respiratory-therapists-role-in-diagnosis-and-treatment/

STS > 8% + 2 elements of frailty

Plan: Address the MR first, reassess TR for emerging therapy

<u>Final Result:</u> 2 Clips (A1-P1, A3-P3) Mild residual MR MV mean gradient = 2 mmHg (HR 87)

Symptoms improved enough that he chose not to have TR treated

Multivalvular Disease is common

Complex inter-relationship resulting in overall clinical picture

Grading severity can be a challenge

• Actual severity and echo appearance affected

Many new transcatheter options are in development

Enjoy Echo Hawaii, join us again next January