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Is AI the answer to all of our problems?

Circulation 2015

Circulation CV Imaging 2018

JACC 2016

Heart 2018
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What problems can we solve?
• Diagnosis

ü Rare diseases, missed diagnoses, misdiagnoses
ü Patients in need of specialized treatment options

• Classification
ü Heterogeneous clinical syndromes

• Automation
• Risk prediction

4
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AI vs. machine learning

https://www.qubole.com/blog/deep-learning-
the-latest-trend-in-ai-and-ml/

ARTIFICIAL INTELLIGENCE
Programs with the ability to 
learn and reason like humans

MACHINE LEARNING
Algorithms with the ability to learn 

without being explicitly programmed

DEEP LEARNING
Subset of machine learning 

in which artificial neural 
networks adapt and learn 
from vast amounts of data
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What is machine learning?
•Machine learning: A program that learns to 

perform a task or make a decision automatically 
from data rather than having to be explicitly 
programmed
▻ Merges statistics + computer science
▻ Statistics: seeks to learn relationships from data
▻ Computer science: Optimizes efficiency of 

computer algorithms
Beam & Kohane. JAMA 2018; Deo RC. Circulation 2015
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https://www.qubole.com/blog/deep-learning-the-latest-trend-in-ai-and-ml/
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Machine learning spectrum

Beam & Kohane. JAMA 2018
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Machine learning: Key concepts
• Types of machine learning

▻ Supervised learning: learning based on labeled data
▻ Unsupervised learning: pattern recognition in unlabeled data
▻ Deep learning: neural networks to handle high-density data

• Bias-variance trade-off + regularization
• Bigger data ≠ better data
• Feature selection
• Train-validate-test

8
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Supervised learning
• Examples: logistic regression, support 

vector machines, random forests

Non-responders Responders

Active treatment arm of HFpEF RCT

Supervised learning to identify 
“signatures” of treatment response

Deep phenotyping

External validation in 
separate clinical trial:

• Post-hoc
• Prospective “all comers”
• Prospective “targeted”

9

Unsupervised learning
• Examples: hierarchical clustering, model-

based clustering, tensor factorization

Heterogeneous group 
of patients with HFpEF

10
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Unsupervised learning
• Examples: hierarchical clustering, model-

based clustering, tensor factorization

Heterogeneous group 
of patients with HFpEF

Group A

Group B

Group C
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Deep learning
• Deep learning: supervised or unsupervised

▻ Useful for very large datasets (e.g., imaging)
▻ Neural network with multiple layers of nodes for 

feature identification and classification
Low-level

feature
Mid-level
feature

High-level
feature

Trainable
classifier

12
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Bias-variance trade-off

MODEL COMPLEXITY
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REGULARIZATION: PENALIZE THE 
MODEL FOR INCREASING COMPLEXITY
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Bigger data ≠ better data

LOW HIGH

M
O

R
TA

LI
TY

Phenotype #1

Phenotype #2

We need informative features (orthogonal features)
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Bigger data ≠ better data
We need informative features (orthogonal features)
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Feature selection
•Which features (variables) should be included in 

the machine learning model?
•When presented with a large number of features, 

how can we select the “best” features?
▻ Supervised learning to rank features (Random Forests)
▻ Unsupervised learning to reduce the dimensions of the data 

(Principal Components Analysis)

16
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Train-validate-test
• The ML model will always look “great” in the 

training dataset
• Use internal validation to tune the model and make 

it more generalizable
• External testing in a completely separate study, 

cohort is critical: think about this in the study 
design phase

17

Key steps in machine learning
• Identify rich dataset for training and a separate, 

similar dataset for testing
• Determine which variables to include in the machine 

learning analysis
• Handle data missingness and dimension reduction
• Decide on type of ML technique and determine 

optimal parameters for model
• Regularization (prevents overfitting)
• Validation and testing

18
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How to evaluate a machine learning study
Category Evaluation Criteria
Study question 
and design

ü Does ML offer specific advantages over 
conventional statistics?

Data
ü Are data being collected primarily for research or 

clinical purposes?
ü Are there issues of biases or data quality?

Approach

ü Is there good rationale for the type of ML used?
ü Internal validation?
ü External testing?
ü Is model performance superior to conventional,

simpler models?

Clinical relevance

ü Do the results have clinical relevance or provide 
mechanistic insight?

ü How well should we expect the study population 
to generalize to the target population? 

19

Machine learning in HF: growing pains
• Ahmad T, et al (JAHA 2018): 

▻ 44,086 Swedish HF patients 
(all LV ejection fractions)

▻ Supervised learning of 
mortality (Random Forests):   
selected top 8 predictors

▻ Unsupervised learning (K-
means) of the 8 top predictors 
found 4 clusters

▻ Validation: clusters differ 
markedly by mortality

SURVIVAL BY

CLUSTER

SURVIVAL BY

LVEF GROUP

20
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Machine learning in HF: growing pains
• Frizzell JD, et al (JAMA Cardiol 2018): 

▻ Complex ML models no better than simple statistical models 
for prediction of 30-day readmissions in HF patients

Logistic 

regression

Random

forests

21

Machine learning to predict CRT response
INPUT DATA UNSUPERVISED MACHINE LEARNING

Cikes M, et al. Eur J Heart Fail 2019

22
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Machine learning to predict CRT response

Cikes M, et al. Eur J Heart Fail 2019
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HF treatment: One-size-fits-all approach

Heterogeneous group 
of patients with 

HFpEF

UNIFORM 
TREATMENT

IMPROVED

NO 
BENEFIT

WORSENED

24
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Personalized, precision medicine

Heterogeneous group 
of patients with 

HFpEF

IMPROVED

IMPROVED

IMPROVED

TARGETED 
TREATMENT

Advanced image analysis
Blood, urine testing

Tissue analysis
Genetic testing
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Iterative clinical discovery

Unsupervised 
machine 
learning
(pattern 

recognition)

Group A 

Group B 

Group C 

Discrete 
pheno-groups

Heterogeneous 
clinical syndrome

Group A 

Group B 

Group C 

Discrete 
pheno-groups
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Machine 
learning

Group A 

Group B 

Group C 

Discrete 
pheno-groups

Further 
investigation

Machine 
learning

Group A 

Group B 

Group C 

Discrete 
pheno-groups

New clinical, 
biological 

insights

Iterative clinical discovery
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Heart failure vs. cancer

Tissue biopsy
Imaging
Phenotypic analysis
• Tumor size, extent
• Histologic analysis
Gene expression

Targeted therapy

Optimal targeted approach

Cancer

Imaging, ECG, PEX
Phenotypic analysis
• Quantify LVEF
• Functional class
• Fluid status
• QRS duration

Non-targeted therapy

Sub-optimal one-size-fits-all approach

HF

28
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Echocardiography: deep phenotyping
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Phenomapping of HFpEF

Shah SJ…Deo RC. Circulation 2015
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Pheno-group classification:
• Added prognostic value over 

MAGGIC risk score and BNP
• Replicated prospectively in 

107 additional HFpEF patients
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HFpEF pheno-groups
Pheno-group #1

Least cardiac 
remodeling/dysfxn

Lowest BNP

Pheno-group #2

Most severely impaired 
myocardial relaxation
Highest prevalence of 

diabetes

Pheno-group #3

Most severe 
electrocardiac

remodeling, renal 
dysfunction
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HFpEF pheno-groups: Cardiac mechanics

GLS
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GRS

RVFW
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GLS = LV global longitudinal strain 

GCS = LV global circumferential strain 
GRS = LV global radial strain 

RVFW = RV free wall strain 
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HFpEF pheno-groups: CPET

Parameter Group 1
(n=54)

Group 2
(n=50) 

Group 3
(n=46) P-value

Exercise time (s) 469±241 310±272 356±195 0.003
Peak SBP (mmHg) 181±27 181±33 164±32 0.009
Heart rate reserve (%) 129±23 114±21 105±26 0.001
Chronotropic incompetence 50% 71% 76% 0.052
VO2 max, ml/min/kg 16.4±6.6 11.3±2.6 13.2±4.3 <0.001
VE/VCO2 at AT 31.1±5.1 32.4±4.9 34.4±5.3 0.015
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HFpEF phenomapping in TOPCAT
TOPCAT Americas, N=1767

0.00

0.20

0.40

0.60

0.80

C
V 

de
at

h 
or

 H
F 

ho
sp

ita
liz

at
io

n

0 20 40 60
Follow-up time (months)

Pheno-
group #3

Pheno-
group #1

Pheno-
group #2

0.00

0.10

0.20

0.30

0.40

0.50

C
V 

de
at

h 
or

 H
F 

ho
sp

ita
liz

at
io

n

0 20 40 60
Follow-up time (months)

Pheno-group #1

Spironolactone

Placebo

Log-rank P=0.02
HR = 0.74 (95% CI 0.57-0.96)

Log-rank P<0.0001
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Phenomapping in the clinic?

üHistory/physical
üLabs
üECG
üEcho

Assign 
pheno-group

Targeted 
treatment, 

clinical trials

Statistical learning

35

Phenomapping in the clinic?

üHistory/physical
üLabs
üECG
üEcho

Assign 
pheno-group

Targeted 
treatment, 

clinical trials

Statistical learning

Deep learning

36
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Machine learning of echo images

Echo image server:
High throughput analysis for 

automated diagnosis, 
feature identification

Deep learning to 
Identify views

(e.g., A4c)

Automated 
identification 

of cardiac 
chambers 

Active 
appearance 
models for 

segmentation

Particle 
tracking for 

tissue 
displacement, 

velocities, 
strain

Zhang J…Deo RC. Circulation 2018
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Can deep learning work for echo?

LeCun, et al. Nature 2015; Zhang J…Deo RC. Circulation 2018
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ML for precision diagnosis of heart disease
Can we use the same technology as self-driving cars to diagnose heart disease?

39

AI to guide echo acquisition
• Improve access to echo in 

primary care and rural 
settings (“democratize 
echo”)

• Deep learning algorithm 
guides echo acquisition by 
novices (nurses, MAs)

• 8 nurses, n=240 patients
• Studies judged to be of 

diagnostic quality for LV 
size, function and pericardial 
effusion in 99% of cases and 
RV size in 93% of cases

• No major differences 
between nurses and 
sonographers

Narang A…Thomas JD. JAMA Cardiology 2021
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Automated measurements + disease detection

LA Volumes! Global longitudinal strain!
Zhang J…Deo RC. Circulation 2018

41

Automated disease tracking over time
 
 

 

segmented. We used 30 quantitative features derived 
from the AAM output, including spacing between the 
inner and outer ventricular boundaries and width, height 
and orientation of the predicted left ventricle and 
included these in a decision tree based model (gradient 
boosting (16)). Our classifier had a 77-80% accuracy to 
detect poor segmentation, as judged by cross-
validation. 

Longitudinal Strain Determination Using Particle 
Tracking 

Our final step was to compute longitudinal strain for the 
left ventricle using the output of the AAMs. Longitudinal 
strain is an increasingly popular method to assess the 
longitudinal function of the heart (19). It is a sensitive 
measure of early evidence of cardiac dysfunction and is 
tolerant of errors in mapping of the endocardial border, 
in contrast with ejection fraction, which requires perfect 
delineation of this boundary.  

Although commercial packages to measure strain have 
been available for many years, they invariably require 
some user intervention and thus cannot be implemented 
in a scalable, fully automated pipeline. Furthermore, the 
black-box nature of these packages has made it difficult 
to interpret how the measurement is made and what 
limitations there may be. Although strain is a robust 
measure of function, inter-vendor agreement in strain 
measurements is variable. For example, one recent 
study found correlation coefficients of 0.23 for strain 
measurements by software packages from GE vs. 
Toshiba, 0.42 for Philips vs Toshiba, and 0.72 for GE vs. 
Philips (19, 29, 30) . The source of such variability is not 
clear, but probably reflects differences in image 

acquisition, processing, and algorithmic differences in 
how strain is computed, which makes it difficult to 
describe any of these as a “gold standard”. 

We wrote our own algorithm for strain estimation, 
adapted from a previously published approach (21). We 
tracked echogenic particles from frame to frame to 
estimate velocities of particles across the length of the 
ventricle. Fitting this variation in particle velocity with 
position permitted estimates of myocardial velocity, 
strain rate, and strain. We compared our results to 
measurements based on commercial vendor packages 
(Figure 4), and found good agreement at the individual 
beat level (r=0.77, 95% bootstrap CI 0.58 – 0.92). 
Agreement at the overall patient level (i.e. where the 
actual videos analyzed may from a given study may 
have differed) was also good (r=0.51, 95% bootstrap 
CI 0.38 – 0.63).  Spearman correlation coefficients were 
0.77 and 0.50 respectively and the mean differences 
between methods on the two datasets were -2.6% 
(95% CI -1.46 – 0.93) and -0.25% (95% CI -0.32 – -
0.18), respectively. These numbers are consistent with 
or superior to most published estimates of strain 
concordance across different algorithms.  

Although we could readily compute strain estimate on 
all images in the former data set, for the latter data set, 
we could not register high quality strain measurements 
on 14% of images because of an insufficient number of 
confidently tracked particles. The median number of 
well tracked particles across a study (we refer to this as 
p) turned out to be a very useful quality metric as low p 
values (<10) coincided with poor agreement in strain 
measurement between 1) different regions of the heart; 

 
Fig. 5: Illustrative longitudinal strain trajectories of patients undergoing trastuzumab chemotherapy. 
Automated strain values were computed for 9421 (apical) videos of 152 breast cancer patients undergoing serial echo 
monitoring during chemotherapy. Individual plots were generated for each patient:  plots for two patients are shown, a 44 
year old woman (left) receiving trastuzumab therapy with 4 cycles of doxorubicin and a 58 year old woman (right) receiving 
trastuzumab therapy only. Each cluster of colored dots represents an individual echo study, with individual points 
representing distinct videos used to estimate longitudinal strain. The size of each point reflects the quality of the estimate, 
as judged by the median number of successfully tracked speckles. A weighted smoothing spline was fit to the data. Ejection 
fractions in the published echo report are shown. Vertical blue dashed lines represent initiation and cessation of 
trastuzumab therapy; red dashed lines, for the patient on the left, represent doxorubicin infusions. A horizontal dashed line 
at longitudinal strain of 16% indicates a commonly used threshold for abnormal strain.  
 

 
 

 

2) different videos from the same study; and 3) 
automated and vendor-determined strain values. For 
example, in the patient-level comparison described 
above, the correlation coefficient values increased from 
0.38 to 0.45 to 0.50 to 0.51 for p-thresholds of 1, 5, 10 
and 15, respectively and the p-weighted correlation 
coefficient was 0.55. All videos used for the individual 
beat level strain comparison had high median particle 
numbers (p >20) and thus this result was not sensitive 
to changing thresholds. 

Mapping Patient Trajectories During Trastuzumab or 
Pertuzumab Treatment 

As described in the introduction, the primary motivation 
of this work is to facilitate early, low-cost detection of 
cardiac dysfunction in asymptomatic individuals to 
motivate initiation or intensification of therapy. Such 
dysfunction can be a consequence of cardiac risk factors 
including diabetes mellitus and hypertension but can 
also arise from cardiotoxic agents used to treat cancer 
(31). In fact, many of these agents require serial cardiac 
monitoring and oncologists may opt to change 
treatment course depending on evidence of cardiac 
deterioration, as judged by changes in ejection fraction 
or longitudinal strain (20).  
Given our ability to estimate longitudinal strain 
accurately, we hypothesized that we should be able to 
use our analytic pipeline to generate quantitative patient 
trajectories for breast cancer patients treated with 
cardiotoxic agents. We identified 152 patients treated 
with trastuzumab or pertuzumab, antibody inhibitors of 
the Her2 protein, which are known to cause 
cardiotoxicity in a subset of patients. We downloaded 
1047 echo studies from these patients and processed 
these (9402 apical videos) through our pipeline. We 
generated automated plots of strain trajectories, 
overlaying chemotherapy usage and reported ejection 

fractions onto our visualization. We found interpretation 
was greatly assisted by characterizing each estimate by 
its value of p, and used a p-weighted spline fit of the 
data. 

We observed a breadth of patient trajectories. Figure 5 
reveals illustrative examples. The patient on the left, a 
44 year old woman who had already been receiving 
trastuzumab therapy for Stage III ER+/HER2+ breast 
cancer, had a rapid drop in longitudinal strain after 
initiation of doxorubicin therapy. Although there is tight 
clustering of the nadir strain values (Figure 5, mustard-
colored dots), there is only moderate concordance with 
the reported ejection fraction in the study. The patient 
on the right-hand side is a 58 year old breast cancer 
patient with Type 2 diabetes mellitus and hyperlipidemia 
who experienced cardiac dysfunction that improved 
after cessation of trastuzumab, although both the 
baseline and final strain values are at the lower limit of 
normal. Such plots (with accompanying statistics) could 
be generated by a cloud-based interpretation system 
that stores prior estimates, thus allowing depiction of 
longitudinal trends. 

To further validate our approach, we also compared 
strain values in patients who did or did not receive 
doxorubicin-cyclophosphamide neo-adjuvant therapy 
prior to receiving trastuzumab/pertuzumab. Consistent 
with prior results (32), pretreatment with anthracyclines 
worsened cardiac function, as represented by lower 
median (19.7 vs 21.1%, p = 0.01) and nadir (16.2 vs. 
17.8%, p = 0.02) absolute strain values (Figure 6). 

IV. DISCUSSION 
We achieved our primary objective, namely to construct 
an end-to-end automated pipeline for assessment of left 
ventricular function. This pipeline is fully scalable, as 
evidenced by our analysis of over 10,000 videos for this 

 

 
Fig. 6: Automated strain measurements confirm the more severe toxicity that occurs when combining 
trastuzumab/pertuzumab with anthracyclines. Violin plots showing median (left) and nadir (right) longitudinal strain 
values for patients pretreated (red) or not pretreated (blue) with neo-adjuvant doxorubicin/cyclophosphamide prior to 
therapy with trastuzumab (and/or pertuzumab). For both statistics, the addition of the anthracycline doxorubicin resulted 
in more severe cardiac toxicity, as judged by significantly lower absolute strain values. 
 

Zhang J…Deo RC. Circulation 2018
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ML for precision diagnosis of heart disease

Typical HFpEF Cardiac amyloidosis
(often misdiagnosed and

requires specific treatment)

43

Automated measurements + disease detection

Zhang J…Deo RC. Circulation 2018

44



1/14/22

23

Goto S…Deo RC. 
Nature Communications (in press)

Newest deep learning model: AUC for cardiac amyloid 0.91-1.00
(based on a single view of the heart on echocardiography [heart ultrasound])

Deep learning to detect cardiac amyloidosis
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Deep learning of bullseye patterns
Deep learning of bullseye maps in the Multi-Ethnic Study of Atherosclerosis 
(MESA): Population-based study, n=3,032 who underwent echo 2016-2018

Goal: find new 
bullseye patterns to 
identify disease, risk 
patterns, novel 
biology

Step 1: Train deep 
learning model to 
identify “features”

Original bullseye maps

Deep learning model predicted bullseye maps
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Deep learning of bullseye patterns
Deep learning of bullseye maps in the Multi-Ethnic Study of Atherosclerosis 
(MESA): Population-based study, n=3,032 who underwent echo 2016-2018

Step 2: Use statistical 
learning (e.g., model-
based learning to 
cluster the features 
identified by deep 
learning model)

47

Deep learning of bullseye patterns
Cluster 1:

Cluster 2:

Cluster 3:

48



1/14/22

25

What went wrong?

49

HFpEF in the future

Heterogeneous 
HFpEF syndrome

Sub-phenotyping:
• Quantitative imaging
• Cardiac biopsy
• Liquid biopsy
• Exercise phenotyping
• Machine learning

Phenotype-
specific 
treatment

50
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Deep learning + multi-omics

Deep learning
Grad-CAM

Echo A4c view

(Echocardiogram)

OMICS
data

Deep learning autoencoder

Data dimension 
reduction

(e.g., PCAs, 
clusters) HFpEF

phenotypes

Ghorbani, Ouyang, et al. NPJ Digit Med 2020
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Machine learning in HF: Future directions
• Differentiate types of learning tasks:

▻ Mimic human behavior (machine replicates a 
task that humans do well)

▻ Perform tasks that humans don’t do well (find 
hidden meaning in data)

• Apply reinforcement learning, generational 
adversarial networks to healthcare problems
• Incorporate machine learning into clinical trials
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Machine learning in HF: Recommendations
• Bigger data is NOT necessarily better data

▻ Informative (orthogonal) features are key
▻ Few precise features: better than lots of imprecise features

• Have a clear goal in mind at the onset of the study: 
resolve heterogeneity of complex phenotypes
• Think about validation/testing from study onset 
• Deep learning: need to develop large repositories 

of images labeled by expert human readers

53

Take home points
• Data-driven analytics may be able to answer several unmet needs 

in echocardiography, especially:
▻ Resolving the heterogeneity of complex CV syndromes
▻ Early diagnosis of complex common and rare CV diseases
▻ Automated measurements to improve workflow
▻ AI guided ultrasound to “democratize” echocardiography

• There are 2 key types of machine learning: 
▻ Supervised learning
▻ Unsupervised learning

• Machine learning is not perfect: Don’t use it blindly
• Know how to properly evaluate studies that use ML
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thank you 

Shah Lab – Northwestern University

sanjiv.shah@northwestern.edu � http://www.hfpef.org � Twitter: @HFpEF
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