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1. INTRODUCTION

The past two decades have
brought significant advances in
the quantification of myocardial
mechanics. The advent of two-
dimensional (2D) speckle-

in the early2000scomplemented
tissue Doppler–based velocity
measures in evaluating myocar-
dial function. In 2011, a collabora-
tion between the American
Society of Echocardiography
(ASE) and the European
Association of Echocardiography,
now the European Association
of Cardiovascular Imaging
(EACVI) of the European
Society of Cardiology, produced
a consensus statement focused
mainly on the physics and instru-
mentation issues involved in a va-
riety of emerging techniques to
assess cardiac mechanics,1 partic-
ularly myocardial strain. There
was relatively little experience
with strain assessment in routine
clinical practice, leading to few
concrete statements for clinical
use in specific settings. In the inter-
vening years, though, there has
been an explosion of clinical trials
leading to thousands of publica-
tions documenting the prognostic
importance of strain assessment
of all cardiac chambers.
Contemporaneous data assessing
speckle-tracking application in
daily clinical practice, suggests an
underuse of this technology.2

Accordingly, the ASE and
EACVI have again commissioned
a clinical consensus statement on
strain, this timemeant to focus pri-
marily on areas of documented
clinical utility. Each society named
a roster of authors, along with
additionalmembers of thewriting
committee from Japan, Korea,
and Australia. This document
was never intended to provide a
comprehensive review of the sci-
ence and practice of strain imag-
ing. For that purpose, the reader
is directed to a recent book from
ASEcovering all of strain imaging3

and a host of review articles ad-
dressing specific applications of
strain imaging, including heart fail-
ure (HF),4 systolic dysfunction,5

diastolic dysfunction,6 cardio-
oncology,7 valvular heart dis-
ease,8 congenital heart disease
(CHD),9 right ventricular (RV)



Table 1 Endorsed clinical indications for strain utilization

Clinical scenarios in

which strain may be

appropriate

Type of

strain and

consensus

advice Clinical value

Acute and chronic MI LVGLS
RVFWLS

LASr

LVMD

LVMW

+++
+++

++

++

�

Diagnosis and prognosis
Diagnosis and prognosis

Prognosis

Prognosis

Not enough evidence

Cardio-oncology LVGLS

RVFWLS

LASr
LVMD

LVMW

+++

++

++
�
�

Diagnosis and prognosis

Prognosis

Prognosis
Not enough evidence

Not enough evidence

Valvular heart
disease $

moderate severity

single or multiple

lesions

LVGLS
RVFWLS

LASr

LVMD

LVMW

+++
+++

++

�
�

Prognosis
Prognosis

Prognosis

Not enough evidence

Not enough evidence

Undifferentiated

cardiomyopathy

LVGLS

RVFWLS

LASr

LVMD
LVMW

+++

+++

+++

++
�

Diagnosis and prognosis

Diagnosis and prognosis

Diagnosis and prognosis

Prognosis
Not enough evidence

Acute and chronic HF LVGLS

RVFWLS
LASr

LVMD

LVMW

+++

+++
+++

++

�

Diagnosis and prognosis

Diagnosis and prognosis
Diagnosis and prognosis

Diagnosis and prognosis

Not enough evidence

CRT LVGLS
RVFWLS

LASr

LVMD
LVMW

+++
+++

++

�
�

Diagnosis and prognosis
Diagnosis and prognosis

Prognosis

Not enough evidence
Not enough evidence

Athlete’s heart LVGLS

RVFWLS

LASr
LVMD

LVMW

+++

+++

++
++

�

Diagnosis and prognosis

Diagnosis and prognosis

Diagnosis and prognosis
Diagnosis and prognosis

Not enough evidence

PH LVGLS
RVFWLS

LASr

LVMD

LVMW

+++
+++

++

�
�

Diagnosis and prognosis
Diagnosis and prognosis

Diagnosis

Not enough evidence

Not enough evidence

Stress

echocardiography

LVGLS

RVFWLS

LASr
LVMD

LVMW

++

++

++
�
�

Diagnosis and prognosis

Diagnosis and prognosis

Diagnosis
Not enough evidence

Not enough evidence

Adult CHD LVGLS

RVFWLS
LASr

LVMD

LVMW

++

++
�
�
�

Prognosis

Diagnosis and prognosis
Not enough evidence

Not enough evidence

Not enough evidence

LVMW, LV myocardial work; +++, clinically endorsed; ++, may be

appropriate; �, not currently endorsed.

LLN = Lower limit of normal

LS = Longitudinal strain

LV = Left ventricular

LVAD = Left ventricular assist

device

LVEF = Left ventricular

ejection fraction

LVGLS = Left ventricular

global longitudinal strain

LVMD = Left ventricular

mechanical dispersion

MI = Myocardial infarction

MR = Mitral regurgitation

MS = Mitral stenosis

MVC = mitral valve closure

PAH = Pulmonary arterial
hypertension

PH = Pulmonary hypertension

PSL = Pressure-strain loop

RA = Right atrial

RASr = Right atrial reservoir

strain

ROI = Region of interest

RV = Right ventricle/

ventricular

RVEF = Right ventricular

ejection fraction

RVFWLS = Right ventricular

free wall longitudinal strain

SAHF = Stage A heart failure

SBHF = Stage B heart failure

SD = Standard deviation

SLS = Segmental longitudinal

strain

STE = Speckle-tracking

echocardiography

STEMI = ST-segment

elevation myocardial
infarction

TAPSE = Tricuspid annular
plane systolic excursion

TDI = Tissue Doppler imaging

TOF = Tetralogy of Fallot

TR = Tricuspid regurgitation

WASE = World Alliance

Societies of
Echocardiography
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function,10 left atrial (LA) func-
tion,11 general principles,12 and
extension to three-dimensional
(3D) imaging.13

For this document, the writing
committee was divided on the
basis of expertise and interest
into small subgroups to address
each of the technical and clinical
areas. Each subgroup developed
clinical advice for application of
strain imaging with brief support-
ing statements. The committee
then was presented with these
clinical advice points and asked
to affirm them or suggest alterna-
tives. The draft document was
then reviewed by the respective
committees of the sponsoring so-
cieties with comments and criti-
cisms requiring responses from
the writing committee. Finally,
the boards of directors of the
ASE and EACVI provided
approval for publication of this
consensus document.

Thepurpose of this document
is multifold. First, it is meant to
guide clinical echocardiog-
raphers in the applications of
strain with clear supporting evi-
dence for its use. Second, up-
dated clinical advice should
encourage the hardware and
software industries to develop
improved algorithms. Third, it
provides guidance to payers as
to which applications of strain
are most worthy of reimburse-
ment. Finally, gaps in the technol-
ogy and evidence base are
identified in hopes of inspiring
new developments and applica-
tions in the field. The clinical
advice is based on expert
opinion, as extensive random-
ized controlled trials using
strain-based measures do not
exist within this space. The docu-
ment itself is organized intomod-
ules facilitating updates in
specific advice as new evidence
is published. The initial section
covers technical developments
since 2011 with emphasis on
the EACVI-ASE Strain
Standardization Task Force.14,15

The next section addresses the
critical issue of establishing
normal ranges in strain, particu-
larly left ventricular global longi-
tudinal strain (LVGLS). The bulk of the document discusses clinical
applications for strain, includingHF, cardio-oncology, ischemia, valvular
heart disease, the right ventricle, the left atrium, exercise and dobut-
amine stress applications, andCHD. Table 1 provides a broad overview



� For LS measurements, a layer-specific strain analysis is techni-

cally challenging and cannot be expected to provide added

value as all layers are tightly coupled to each other and shorten

roughly the same.

� In regional disease, timing becomes important, and strain curve

shape analysis may be the preferred approach.
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of the writing committee’s suggested high-yield scenarios for when to
use strain in day-to-day clinical practice. Finally comes a section on
future directions, which we hope will inspire clinicians and engineers
to maintain the pace of development in this exciting field.

2. BRIEF TECHNOLOGY UPDATES FROM 2011 GUIDELINE

A. Vendor Dependency and Results of the Strain
Standardization Task Force

Beginning around 2010, increasing clinical use of speckle-tracking re-
vealed relatively poor reproducibility when strain was calculated us-
ing echocardiographic equipment from different vendors.16,17

Recognizing the need for standardization, the EACVI and ASE invited
technical representatives from interested vendors to participate in a
task force aiming to reduce the intervendor variability of strain mea-
surements. The task force convened for the first time at EuroEcho in
Copenhagen 2010 and has since then had regular meetings at annual
scientific sessions of both societies.18

In 2015, a consensus statement was released to communicate tech-
nical definitions of various terms, parameters, and methods
commonly used in myocardial deformation imaging,15 such as geo-
metric definitions of the myocardial region of interest (ROI) and its
segments; interpretation of the terms endocardial strain, epicardial strain,
andmidwall strain as deformation of lines along the endocardium, the
epicardium, and the middle of the wall; mathematical definitions of
parameters measuring motion, deformation, and rotational me-
chanics; as well as aspects of postprocessing of strain data and the
timing of measurements. Although this document focused on the
left ventricle, a second statement with focus on the RVand atrial strain
measurements was released in 2018.14

Currently, the definition ofmyocardial tracking regions differs substan-
tially among vendors. Although endocardial tracking, combined endocar-
dial and epicardial tracking, and midwall/full-wall tracking are equally
feasible and reproducible,19 evidence is increasing that midwall strain
measurements based on full-wall tracking are less susceptible to subopti-
mal imagegeometryandabnormalmyocardial shapes.20,21This approach
alsoappears as themost robust, since theROIcomprises a greaternumber
of myocardial features/speckles that can be tracked. Finally, the vast ma-
jority of normative and clinical data use the midwall/full-wall approach.
Therefore, this writing committee supports the midwall/full-wall
approachas thepreferredmethodmoving forward.Wefurtherencourage
vendors to standardize strain algorithms accordingly.

For longitudinal strain (LS) measurements, a layer-specific strain
analysis is technically challenging because of the small number of
speckles across the wall and the limited lateral resolution of the image.
It does not provide added value as all layers are tightly coupled and
shorten roughly the same.22 Radial thickening and, to a lesser extent,
circumferential shortening might provide added information in non-
transmural disease, but there is currently no evidence for clinical use.

An intervendor study comparing global LS (GLS)measurements ob-
tained from seven different echocardiography hardware vendors and
two additional software vendors revealed intervendor differences in
strain values but very good reproducibility in test-retest scenarios with
equipment from the same vendor.23 Consequently, strain has been
stronglyendorsed as a feasible complementaryparameterof left ventric-
ular (LV) function in the updated chamber quantification guidelines.
Different strain values per vendor in combination with differing
vendor-specific measurement variability, however, resulted in small
but relevant differences in the proposed lower limit of normal (LLN)
GLS for each vendor.24 Of note, strain values may shift slightly with
different software versions from the same vendor. Therefore, the task
force advises following a particular patient with software from the
same company to reduce this potential source of variability.25

In a second intervendor study investigating only patients with
myocardial infarction (MI) with cardiac magnetic resonance imaging
(CMR)–defined scar, segmental LS (SLS) measurements were found
to have a markedly higher measurement variability than did GLS,26

likely related to differences in spatial smoothing of regional strain.
Marked intervendor differences in the ability to differentiate scar
from normal myocardium were also noted.27 A recent study showed
significant variation between two vendors in the measured relative
sparing of measured apical strain commonly used in detection of am-
yloid, again likely due to differences in spatial smoothing.28

Among the studies reporting on normal ranges of GLS, there has
been variability among the utility of end-systolic LS vs peak systolic
LS.29,30 Despite this, the writing committee maintains its stance that
end-systolic LS (obtained at AVC) be reported as the default param-
eter for GLS.15 If alternative timings are used, these need to be explic-
itly reported to avoid confusion.

Several vendors have released dedicated tracking software for the
right ventricle and left and right atria. Compared with a manual adap-
tation of an ROI of LV software to the differing shape of the right
ventricle and left and right atria, the use of dedicated software results
in comparable measurement values but significantly improves the
measurement feasibility and reproducibility.31

In most pathologies, regional dysfunction results in pronounced
changes in the time course and shape of myocardial deformation,
so that a detailed shape and/or time analysis of SLS curves becomes
more relevant than pure peak strain values (Figure 1). Consequently,
attention to the correct timing of end-diastole and end-systole is very
important when quantifying strain.32 Regional strain is not supported
by the Task Force, because of significant interobserver, intraobserver,
and intervendor variability.

Additionally, a third intervendor study has been recently conduct-
ed with the aim to quantify differences that may be present in cham-
ber specific functions and contemporary editions of strain packages.
Results indicate that there has been a gratifying convergence of strain
measurements from major vendors. Furthermore, most vendors do
now also support the measurement of midwall/full-wall strain.33

Finally, in publishing values of strain, much discussion has sur-
rounded the use of the negative sign prefacing strain values. The
Task Force appreciates the theoretical and practical implications of
this denomination when presenting strain data and advises as follows:

1. If presenting segmental values of strain, the negative sign should be kept for
differentiating dyskinetic from normal myocardial contractility.34

2. If presenting GLS, it is advised that the negative sign be used.34

3. If the negative sign is omitted, then the term global longitudinal shortening
should be used to correctly refer to the values presented and should be
communicated accordingly in the methodology of scientific papers.34

Key Points
Clinical Consensus Statements
1. GLS is robust and reproducible using most vendors’ software and should

be used as a complementary parameter of global LV function.



Figure 1 Time and shape representation of normal comparedwith infarctedmyocardial segmental regional strain curve differences. SLS
curves fromanormalmyocardial segment (green)andan infarcted segment (red). Note the similar peak strain of both curves (open circles).
A distinction is only possible via a shape analysis. The infarct segment shows early systolic stretching and reduced end-systolic strain (full
circle), while there is a marked postsystolic strain after aortic valve closure (AVC). Reproduced with permission from Mada et al.32

Key Points

� Deformation imaging based on STE is the method of choice for

a rapid and comprehensive functional assessment of the entire

ventricle.

� Deformation imaging based on TDI-derived strain is advanta-

geous for rapid evaluation of single ROIs.

� TDI has superior temporal resolution over STE, thus allowing

more reliable peak velocity and peak strain rate measurements.

� Researchers and industry are encouraged to continue efforts to

increase frame rates of STE.

Journal of the American Society of Echocardiography
Volume - Number -

Thomas et al 5
2. The vast majority of normative and clinical data use the midmyocardial/
full-thickness approach, which should be the preferred method moving
forward. In general, strain values from the midwall should be reported.

3. It is advised that GLSmeasurements should by default be reported as end-
systolic LS.

4. Radial strain performed poorly in the intervendor studies and is not
endorsed for clinical use at this time.

5. GLS values from different vendors have converged in recent years.
Although follow-up of a patient should ideally be done with tracking soft-
ware from the same company and the same release version, in many cases
alternative vendors may also be used with care.

6. Theperformanceofdifferent vendors for regional strainmeasurements varies
considerably, and vendor consistency for an individual patient is advised.

7. When presenting segmental strain values, the negative sign should be kept
to differentiate dyskinetic from normal myocardial contractility.

8. When presenting global strain values, the negative sign should in general
be used.

9. To improve communication with multidisciplinary medical and allied
health colleagues, the negative sign may be omitted, but only if fully ex-
plained in the methodology using the term global longitudinal shortening.

10. When available, the use of dedicated RV and atrial strain software should
be preferred over adapting the ROI for LV software.

B. Tissue Doppler Imaging vs STE

Speckle-tracking echocardiographic assessment ofmyocardial function,
in particular GLS, has been rapidly adopted by clinicians. However, tis-
sue Doppler imaging (TDI), except for early diastolic mitral annular ve-
locity (e0) and RV annular velocity (S0), has generally remained a
research tool. Although STE is convenient to use and provides smooth
deformation curves it is important to note that thesemay be affected by
regularization algorithms. During postprocessing it is crucial to compare
the tracking result with the underlyingmyocardial motion to identify re-
gions where the software is not tracking myocardium appropriately.15

TDI data have excellent temporal and spatial resolution butmay appear
frequently noisy. However, this superior temporal resolution allows
more reliable identification of artifacts, in comparison with strong post-
processing algorithms in speckle-tracking, which may smooth out data
in areas where tracking has failed.

Therefore, during clinical routine imaging, TDI is advantageous for
a fast evaluation of a single region and the comparison of curve shapes
among myocardial segments. Furthermore, TDI can measure strain
and strain rate. Speckle-tracking allows an easy evaluation of an entire
chamber and is the preferred approach for GLS measurements and
other advanced postprocessing, including bullseye displays of
different function parameters. It must be remembered, however,
that it lacks sufficient temporal resolution for accurate velocity and
strain rate measurements when used on standard 2D images from
the clinical routine which rarely exceed 70 frames/s. Mastering either
technique requires a similar amount of training.35,36

Recent advances in imaging technology enable the acquisition of
2D image data at frame rates of$500 frames/s (plane wave imaging,
diverging wave imaging). This offers the possibility to perform STE at
frame rates that were so far only available from TDI and may result in
more accurate strain rate and velocity quantitation with STE.37

However, this remains in the realm of research and is not clinically
endorsed at this stage.
C. Clinical Advice for Avoiding Technical Pitfalls in Strain
Acquisition

Significant advances in the field of strain imaging have resulted in ven-
dors developing nearly fully automated workflows for strain quantifi-
cation. These steps have resulted in substantial declines in inter- and
intraobserver variability for the quantification of LVGLS, RV free
wall LS (RVFWLS), and LA strain.26,27,31 Despite this there are perva-
sive technical pitfalls that can affect the accuracy of strain quantifica-
tion which are related to image quality/acquisition, ROI selection,
algorithm-based myocardial tracking errors, user definitions of end-
diastole/end-systole, extremes of blood pressure affecting preload/
afterload and rhythm associated irregularities during quantification.
For a comprehensive list of pitfalls and endorsed tips for avoiding
these, refer to Table 2. Briefly, the writing committee brings the



Table 2 Common pitfalls and corresponding clinical advice for strain acquisition and quantification

LV strain technical pitfall Effect on strain measurement Example Clinical advice

Foreshortening of the
LV apical windows

Erroneously increases apical
segmental strain values

Avoid using foreshortened LV
images for strain

quantification and ensure

the true apex is visualized
during acquisition.

Poor visualization of
myocardium and/or

endocardial to blood

interface in LV

segments

Poor endocardial/myocardial
tracking

Do not incorporate segments
with areas of poor image

quality and tracking into

global strain calculations (if

overall more than three
segments are

uninterpretable, do not

report LVGLS values).

Using excessively large

myocardial ROI

Underestimating strain values Ensure that only the full

myocardial wall is included
in the ROI, as inclusion of the

pericardium artificially lower

strain values.
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Using excessively

small myocardial

ROI

Overestimating strain values Particularly in hypertrophic

hearts, ensure inclusion of

the full wall in the ROI.
Otherwise the ROI reflects

rather a layer (here

subendocardial,

overestimating full-wall
strain).

Including local
abnormalities in

chamber geometry

and wall thickness

When a septal bulge or a
similar structure is present in

other regions of the

ventricle, radial strain may
become dominant,

potentially resulting in a net

positive systolic strain when

using STE on images
acquired from apical views

To accurately assess
longitudinal shortening in

the presence of localized

thickening of the LV wall, the
ROI should be drawn in a

straight, longitudinal

direction, avoiding

significant local bulges.
However, if the wall

thickening extends across

more than one full segment,

we advise including the
thickened region within the

ROI.

Inaccuracies in
defining end-

diastole and end-

systole

Either increase or decrease
strain depending on where

the segmental curve peaks/

troughs start and finish in the

cardiac cycle

End-diastole and with it zero
strain should correspond to

MVC. End-systole should

correspond with AVC. If

necessary, timing should be
manually adjusted on the

basis of direct observation

of the mitral and AVC or

through spectral Doppler
evaluation.

Using only a single
cycle when

quantifying strain in

AF

Over- or underestimation of
strain values depending on

the preceding filling phase

Strain values depend on the
length of the preceding filling

phase. Consider averaging

several cycles, or measure
the third of three

consecutive cycles with

approximately the same

length.

(Continued )
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reader’s attention to excellent resources that provide comprehensive
overviews on these technical topics for LV strain,11,38 RV strain,39 and
LA strain40 quantification.
3. NORMAL RANGES OF STE-DERIVED STRAIN

Normal ranges should be defined from large numbers of normal vol-
unteers from the community. The risk of including ‘‘convenience sam-
ples’’ of normal echocardiograms from standard echocardiographic
practice is that a referral for echocardiography is provoked by some
symptom. An individual patient meta-analysis of >2,300 people stud-
ied predominantly using the General Electric system (and hence
midwall/full-wall strain)29 provides information about variance (and
therefore range) that cannot be identified from traditional meta-
analyses (Figure 2). The mean GLS was �21%, with an SD of
2.6%, implying that only 2.5% of normal people have myocardial
GLS less negative than �15.9%, and 32% are less negative than
�18.4%. As endocardial strain has higher absolute values than
myocardial strain, it is not surprising that the lower limit cutoff from
the World Alliance Societies of Echocardiography (WASE) study,
which used endocardial strain with TomTec, was �17% in men and
�18% in women,41 in contrast to �16% observed by D’Elia et al.29

More recently, Morris et al.42 performed the most comprehensive
meta-analysis of LVGLS across 47 studies including 23,208 healthy
adults. That study identified �16% as the LLN for LVGLS across ma-
jor software vendors and demonstrated its prognostic relevance
among a large independent sample of at risk for HF and elderly sub-
jects.42

Interindividual variation has been attributed to loading conditions,
age, and gender.43,44 Race does not seem to make a major contribu-
tion, with similar limits in different countries reported in the WASE
studies.41 In a group of elderly subjects (age > 65 years) with risk fac-
tors, the impact of age was explained by the comorbidities that are
associated with increasing age (Figure 3).45 Normal ranges of strain
have been reported in children. However, these are beyond the scope
of this document and will be reported in separate dedicated pediatric
guidelines.46,47

Both acquisition equipment and analysis software should have a
potentially important impact on GLS, though the EACVI-ASE Strain
Standardization Task Force has successfully minimized these differ-
ences with less intervendor variation than many standard linear and
Doppler measurements.23 As mentioned above, some manufacturers
quote GLS as myocardial and others as endocardial strain, the latter
having about 1% greater absolute magnitude than the former.
Studies performed on different vendors’ machines, for the same pa-
tient across sequential studies, should ideally have GLS compared
by use of vendor-independent software. Comparison of studies per-
formed with software from one manufacturer should again be ideally
measured using the same software version. Furthermore, when consid-
ering regional and segmental strains, a study of 58 patients who had
regional strain measured on multiple vendors showed that SLS mea-
surements vary significantly among vendors (Figure 4).22,26

Test-retest variation (the change in a parameter over sequential
measurement in a stable person) is the core metric that determines
the use of GLS in follow-up.48 The EACVI/ASE Strain
Standardization Task Force elegantly demonstrated in a multivendor
study no statistically significant differences in test-retest variability of
peak systolic or end-systolic strain measures23 but this is not the
case for segmental strain (Figure 5).26 This has been best studied in
the setting of potential cardiotoxicity, where a meta-analysis has



Figure 2 Normal GLS. Normal range defined by individual-patient meta-analysis from eight recent studies (2,396 subjects; mean age,
42 years; mean weight, 666 12 kg; mean height, 1696 9 cm; mean body surface area, 1.76 0.2 m2; mean systolic blood pressure,
1206 13mmHg). GLS by age group; GLS progressively decreases after the age of 60 years but appears to be relatively stable up until
this age. White circles indicate outliers.29

Figure 3 GLS across advancing age tertiles subcategorized by elevated N-terminal pro-BNP (NT-proBNP).Whiskers correspond to
maximum and minimum values.45
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Figure 4 Differences in regional LV strain measurements with different software. Different measurements of average segmental lon-
gitudinal peak strain (PS), end-systolic strain (ES), and postsystolic strain (PSS) LV strain are documented in the same patients. The
table shows the significance (*P < .05) of pairwise differences between vendors.26

Figure 5 Test-retest differences of segmental longitudinal peak strain (PS), end-systolic strain (ES), and postsystolic strain (PSS) LV
strain between different vendors. Theminimum detectable differences between twomeasurements are large in relation to likely path-
ological changes.26
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defined a relative change of 10% to 15% to predict the subsequent
emergence of toxicity.49 In a randomized trial of GLS-guided and
ejection fraction (EF)–guided management, the initiation of cardio-
protective therapy in response to a relative GLS change of 12% led
to 5.8% of patients developing cardiotoxicity compared with 13.7%
in the EF-guided arm.50

The normal range of RVFWLS (�26.46 4.2%; LLN,�18.2%) has
been previously defined in >1,000 normal people. Women had more
negative RVFWLS (�27.264.8%; LLN, �17.8%) and younger
(age < 50 years) women had the most negative global RV LS
(including both free wall and RV septal strain) values
(�22.9 6 3.2%) compared with men.51 Furthermore, data from
the WASE study using a multinational, multisite cohort and vendor-
neutral software demonstrated in 1,913 patients (981 men, 932
women) an overall RVFWLS of �28.3 6 4.3% (LLN, �19.9%) and
women having more negative values than men (�29.3 6 4.2%
[LLN, �21.1%] vs �27.3 6 4.1% [LLN, �19.3%]).52

Normal LA strain has been reported in a meta-analysis of 2,542
healthy adult subjects in 40 studies.53 Normal LA reservoir strain
(LASr) was 39% (95% CI of the mean value, 38%-41%; from 40 ar-
ticles), LA conduit strain (LAScd) was 23% (95% CI, 21%-25%; from
14 articles), and LA contractile strain (LASct) was 17% (95%CI, 16%-
19%; from 18 articles). Meta-regression identified heart rate (P = .02)
and body surface area (P = .003) as contributors to this heterogeneity.
Subgroup analyses revealed heterogeneity due to sample size
(n > 100 vs n < 100, P = .02).

Supplemental Table 1 summarizes the normal reference values of
global LA strain of the main studies. The normal LASr in healthy in-
dividuals is approximately 30% to 60%, with an LLN of 23%.53-56

There was a significant decrease in all three LA strain parameters
with increasing age irrespective of gender in most studies. In some
studies, women had slightly higher values in youth, but showed a
greater fall in LASr with aging.56,57

Three-dimensional strain has the attraction of being able to track
through-plane movement but at the cost of lower temporal and spatial
resolution than 2D strain. A meta-analysis of normal LV ranges of 3D
strain has shown significant variation.58 Normal ranges of twist, strain
area, and other parameters also show unacceptable variability.59

Clinical Consensus Statements

1. Normal LVmyocardial GLS is more negative than�18%. Borderline GLS is
�16% to �18%. Abnormal GLS is less negative than �16%.

2. Normal ranges of GLS are subject to changes in software version. Compar-
isons in GLS should ideally use the same software vendor and software
version, care should be taken when comparing values derived from
different vendors. Vendors are encouraged to maintain fidelity as software
is updated.
Table 3 Indications for use of LV strain in HF

Stage A Stage B

Risk assessment Association of strain and outcome

Diagnosis Distinction of SAHF vs SBHF Is it H

Management ICD decision-making

Follow-up Cardiotoxicity Reco

inc

BiVAD, Biventricular ventricular assist device; ICD, implantable cardiac de
3. The optimal use of LVGLS is in sequential follow-up, by comparison with
baseline. Used in this way, a relative change of 10% to 15% is likely to be
significant.

4. The use of 3D strain is still in development because of variabilities in soft-
ware and inconsistent results and is not endorsed for clinical use.

5. Normal ranges of RVand LA strain have been defined and can be used, sub-
ject to the same qualifications of load dependence.

6. The LLN for RVFWLS is advised as �20% in men and �21% in women,
and values less negative than these should be considered pathologic.

7. The most relevant LA strain parameter is reservoir strain with upper and
lower limits of normal considered to be 23% and 60%. Borderline
abnormal is considered between 23% and 30%.

8. Regional strain values show too much test-retest and intervendor variability
to be used clinically.
4. CLINICAL APPLICATIONS OF STRAIN

A. HF

EF has traditionally been themost important parameter in HF imaging
and remains the cornerstone. However, the detection of early disease,
serial quantification of function, prediction of outcomes and decision-
making about various interventions are all potentially benefited by the
addition of strain (Table 3).

a. Stages A and B HF. Although a common problem, with a life-
time prevalence of about 20%, HF is not an inevitable consequence
of aging but instead has multiple risk factors including hypertension,
diabetes and obesity. Patients with these risk factors are considered
to have stage A HF (SAHF).

Stage B HF (SBHF), which is essentially asymptomatic LV
dysfunction, can be the natural progression of unresolved risk fac-
tors.60 Traditionally, this has been defined based on previous infarc-
tion, LV remodeling, and asymptomatic valvular disease, all preludes
to the development of HF with reduced EF (HFrEF). With HF with
preserved EF (HFpEF) now accounting for more than half of all pa-
tients with HF, LV diastolic dysfunction, LA enlargement, and
impaired LVGLS should be considered in this definition61; they
are certainly linked with impaired functional capacity62 and the pre-
diction of incident HF.63 These changes do not necessarily occur in
unison; the ‘‘hypertensive’’ component appears to be associated
with diastolic disturbance and may contribute to metabolic and
fibrotic components resulting in impaired GLS with a basal to
apex continuum.64,65

Impaired GLS is prognostically important in patients with hyper-
tension,66 diabetes,67 and obesity.68 In an echocardiographic exami-
nation performed in patients with these disease entities, LVGLS
should be reported to provide further prognostic information.
Stage C: HFpEF Stage C: HFrEF Stage D

FpEF (vs noncardiac dyspnea)

eCRT implantation VAD vs BiVAD

gnition and follow-up of

reased filling pressure

Adequacy of

therapy

fibrillator; VAD, ventricular assist device.
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Increased LV mass is not specific in terms of etiology; the most
common causes are increased afterload (e.g., hypertension, aortic ste-
nosis [AS]), myocardial disease (e.g., hypertrophic cardiomyopathy
[HCM]), and infiltrative diseases. LVGLS is significantly impaired in
primary myocardial disease and infiltration, and the distribution of
abnormal strain may provide important clues to the etiologic diag-
nosis. For example, regional septal strain impairment may be seen
in classical HCM, apical strain impairment in apical HCM, predomi-
nant basal to midsegment impairment in hypertensive heart disease,
and prominent apical-sparing patterns of strain in cardiac amyloidosis
(Figure 6).65,69

Although patients with abnormal LVGLS in the setting of hyperten-
sion,66 diabetes,70 and obesity68 are at risk for HF,71 there remains no
evidence that screening for SBHF alters outcomes. Studies are needed
to show that LVGLS-guided screening is useful for selecting patients
for cardioprotective therapy, for HF prevention, and for enhancing
the cost-effectiveness of treatment.

Clinical Consensus Statements
1 Abnormal GLS (less negative than �16%) or borderline GLS (�16% to

�18%) in the presence of other echocardiographic abnormalities should
be considered a marker of SBHF.

2. GLS should be obtained and reported in patients with increased LV mass,
on the basis that an apical sparing of regional LS (mean of the apex >2 times
the mean of the rest of the heart) points toward the possibility of cardiac
amyloidosis.

3. GLS is currently not advised for the screening of SAHF, but there may
be some utility in the recognition and monitoring of treatment of
SBHF.
Figure 6 Use of LV strain patterns to determine etiology of LV hype
morphology of LV wall thickening, the strain maps show particular
impaired septal function, (B) apical HCM demonstrating apical impa
cal dyskinesis, (D) transthyretin cardiac amyloidosis demonstrating
(ESRD) with a pattern mimicking a relative apical-sparing pattern, a
mid to apical segments but sparing of the basal segments. ANT, An
LAT, lateral; POST, posterior; SEPT, septal.
b. Stages C and D HFrEF. Although the frequency of HFrEF
(LVEF < 40%) is decreasing with rising incidence of HF with
improved EF (HFimpEF) and the evolution of novel therapies,
HFrEF remains a leading cause of morbidity and mortality world-
wide.72

LVEF itself is a significant prognostic factor in HFrEF, but it has
inherent variability, influenced by image quality, off-axis imaging,
and geometric assumptions.73 Furthermore, LVEF changes over
time. The advances in pharmacotherapy for HF, the introduction of
cardiac resynchronization therapy (CRT), and the improved recogni-
tion of reversible causes of HF have contributed to the improvement
of LVEF and outcomes. However, treatment responsemay vary, and a
persistently reduced LVEF over time portends a worse prognosis.74

Better understanding of the predictors of adverse outcomes in
HFrEF may improve the quality of treatment and outcomes.

LVEF and LVGLS show a significant correlation, but for a given EF,
LVGLS shows a wide distribution (see Supplemental Table 2).75

LVGLS independently predicts outcomes after adjusting for clinical
factors and conventional echocardiographic parameters.76,77

Absolute LVGLS equal to or less negative than �6.95% predicted
worse long-term adverse events, including death, cardiac transplanta-
tion, and HF hospitalization, and each 1% decrease of LVGLS was
associated with 15% increased odds for mortality in HFrEF. LVGLS
also provides superior prognostic values than LVEF in predicting mor-
tality.78 Among patients with acute HF, moderate and severe LVGLS
reductions correlated with higher mortality, but LVEF was not associ-
ated with mortality after multivariable analysis (Figure 7). LVGLS can
also be used to predict the trajectory of LVEF in HFrEF. Each 1%
rtrophy and HF. Despite the common 2D echocardiographic LV
patterns suggestive of (A) neutral-variant HCM with relatively

irment, (C) apical HCMwith apical aneurysm demonstrating api-
a relative apical-sparing pattern, (E) end-stage renal disease
nd (F) takotsubo cardiomyopathy (CM) with impairment of the
terior; ANT_SEPT, anteroseptal; GS, global strain; INF, inferior;



Figure 7 Prognostic value of LVGLS in HFrEF. (A) Worsening LVGLS (less negative than �6.95%; red and brown line) predicted
poorer long-term adverse events in patients with chronic HF regardless of whether LVEF was $25% or <25% (P < .05 for both).
(B) In a separate study, the risk for dying among patients with HFrEF increased with decreasing tertiles of GLS, being approximately
3 times higher for patients in the lowest tertile compared with patients in the highest tertile (tertile 1 vs tertile 3; hazard ratio, 3.38; 95%
CI, 2.3-5.1; P < .001). (C) In patients with acute HF, the estimated probability of 5-year all-cause mortality according to LVEF (A) and
GLS (B). Mortality decreased with decreased strain, but its relationship with LVEF was not prominent. (D) Incremental prognostic
value of predictors by binary logistic regression model presented as a global c2 value. The addition of GLS offers a significant addi-
tional benefit over conventional parameters. BB, Beta-blocker; HR, heart rate; HFiEF, HF with improved EF; IDI, integrated discrim-
ination improvement; LVEDD, LV end-diastolic diameter; SBP, systolic blood pressure. Reproduced with permission from Park
et al.78,79, Janwanishstaporn et al.,80 and Merlo et al.81
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increase in absolute LVGLS (larger negative value, indicating greater
contractility) was associated with 10% increased odds for improve-
ment in LVEF above 40%, resulting in HFimpEF (LVEF # 40% at
baseline and improved to >40% at follow-up; Figure 7D).79 But
even with LVEF recovery, impaired LVGLS is still a strong predictor
for future HF events and deterioration in cardiac function.80,81

These findings emphasize the need for routine assessment of
LVGLS to improve risk stratification in echocardiographic follow-up
for patients with HFrEF.

Recently, LASr and RVFWLS were also found to have strong prog-
nostic relevance to adverse outcomes in HFrEF independent of LVEF
and LVGLS (see Supplemental Tables 3 and 10).82-84 In patients with
end-stage HF requiring LV assist device (LVAD) implantation,
RVFWLS is a better and stronger predictor of right HF after LVAD im-
plantation than tricuspid annular plane systolic excursion
(TAPSE).85,86

Clinical Consensus Statements
1. LVGLS should be obtained and reported in patients with HFrEF for prog-

nostication. Worse GLS is a strong predictor of adverse cardiac events.
2. Longitudinal follow-up of LVGLS is advised in patients with HFrEF and

HFimpEF to predict future LV remodeling and outcome.
3. Assessment of RVFWLS may help predict RV dysfunction in patients un-

dergoing implantation of LVADs.
4. Assessment of LASr and RVFWLSmay provide additional prognostic infor-

mation in patients with HFrEF.
c. HFpEF. HFpEF is a heterogenous disorder with many etiologies,
defined by an EF of $50% with some degree of impairment in dia-
stolic, systolic, and microvascular functioning accompanied by reduc-
tions in exercise tolerance and symptoms of HF.87-89 Myocardial
deformation mechanics are particularly useful in identifying patients
with HFpEF, as traditional echocardiographic LVEF lacks
specificity.90 LVGLS is usually impaired in patients with suspected
HFpEF, and characteristic patterns of bull’s-eye plots may point to spe-
cific etiologies in this patient population.91 Furthermore, there is
growing evidence to support the prognostic value of impaired
LVGLS in patients with HFpEF, with incrementally impaired LVGLS
portending a poorer prognosis.78,92

The translational effect of increased filling pressures and pulmo-
nary vascular resistance, secondary to HFpEF, imparts increasing
load on the right ventricle, which may become impaired in the
advanced stages of etiologies that predominantly affect the left
ventricle.87 In infiltrative conditions resulting in HFpEF, RV dysfunc-
tion may be appreciated earlier in the disease course. Regardless, in
HFpEF, RVFWLS is valuable for identifying early RV dysfunction,
particularly in conjunction with elevated pulmonary artery pres-
sures,93 and for ongoing monitoring and prognosis.94

Because of the dynamic presentations of HFpEF, provocative ma-
neuvers, such as stress testing, are usually employed in patients with
suspected HFpEF. In this situation, strain-based parameters may
enhance discriminative value.95 Despite the emerging incorporation



Figure 8 Strain-based staging of left bundle branch block (LBBB)–induced LV remodeling. (A) Early stage. The septal strain curve
(red) shows a slight notch when the lateral wall (blue) starts contracting. (B) Progression of LBBB-induced remodeling with more pro-
nounced notching in the septum. (C) Reduced septal function. (D) Advanced LBBB-induced remodeling. The septum stretches dur-
ing lateral wall contraction. Septal flash (arrow) can be observed in all four stages because of the early septal longitudinal
shortening.104-106
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of strain-based parameters into the investigation and management of
HFpEF patients, significant work is still required to better understand
the utility of strain in risk stratifying patients with HFpEF, subpheno-
typing established diagnoses of HFpEF, and predicting the develop-
ment of HFpEF within vulnerable populations. The impact and
significance of LA dynamics and strain in HFpEF are discussed further
in section 4.F.h.

Clinical Consensus Statements
1. LVGLS can aid in the diagnosis of HFpEF, helping distinguish this from

other causes of dyspnea.
2. Worsening LVGLS and RVFWLS are associated with adverse outcomes in

HFpEF. These may be used as prognostic factors.

d. Cardiomyopathies vs Athlete’s Heart. STE provides valuable
incremental information on myocardial function over and above
LVEF and TDI. In competitive athletes undergoing strength-based ac-
tivities, LV wall thickness tends to increase relative to chamber size
andmaymimic hypertensive or infiltrative phenotypes. LVGLS is usu-
ally relatively preserved in competitive athletes compared with equiv-
alent LV wall thickness increase observed in pathologic concentric
remodeling (see Supplemental Table 4).

In endurance-based exercises, increased LV chamber volume with
relatively preserved LVwall thickness is observed and is accompanied
by preserved LVGLS. This contrasts with reductions in LVGLS
observed in inherited or valvular cardiomyopathic conditions with
large LV volumes and eccentric remodeling.

Structural alterations are not limited to the left ventricle, and equiv-
alent changes in chamber remodeling have been observed in the right
ventricle and left atrium in competitive athletes. RV dilation in
conjunction with LV dilation has been well documented in endurance
athletes, and RVFWLS is relatively preserved compared with an age-
matched general population.96 This contrasts with age-matched pa-
tients with arrhythmogenic RV cardiomyopathy (ARVC) and those
with HCM, in whom RVFWLS is frequently abnormal.97,98

It is not clear whether LA strain can differentiate the LA enlarge-
ment observed in endurance-based and strength-based athletes
from LA enlargement seen in cardiomyopathy patients. LASr has
been found to be significantly reduced in endurance-based competi-
tive athletes compared with age-matched nonathlete populations in
some studies but preserved in others.99 Compared with cardiomyop-
athies, LASr was higher in competitive athletes.100 Using LASr to
distinguish adaptive remodeling in competitive athletes from adverse
remodeling secondary to cardiomyopathies or atriopathies is not
advised.
Clinical Consensus Statements
1. LVGLS in competitive athletes tend to fall within the normal to low normal

range for the comparative age- and sex-specific general population. If values
are less negative than a low normal range, this may be suspicious for an un-
derlying cardiomyopathic process.

2. RVFWLSmay provide incremental information in the context of abnormal
RV chamber parameters when there is a suspicion of an underlying cardi-
omyopathic process instead of adaptive physiological remodeling second-
ary to competitive athlete’s heart.

3. There is insufficient evidence at present to support the use of LA strain pa-
rameters in differentiating underlying atriopathies from remodeling that oc-
curs in competitive athlete hearts.

e. Myocardial Dyssynchrony. In contrast to earlier studies that
applied nonspecific time-to-peak parameters, evidence is now
growing that intraventricular dyssynchrony can be related to better
volume response and outcome after CRT if specific deformation pat-
terns are sought.101 Visual assessment of phenomena such as septal
flash and apical rocking might already be sufficient to select CRT pa-
tient candidates with higher accuracy than current guideline
criteria.102 However, tissue Doppler and speckle-tracking segmental
strain analysis can be used in addition to characterize such specific
deformation patterns amenable to treatment by CRT.103 Data from
large, randomized studies using specific deformation parameters for
guiding patient management by CRT are currently being performed
(ClinicalTrials.gov identifier NCT04225520) and may influence
future guidelines.

In dyssynchronous hearts amenable to CRT, septal strain patterns
develop an early onset of shortening followed by a notching when the
lateral wall starts to contract. More advanced remodeling is character-
ized by systolic stretching of the septum (Figure 8).104,105 Despite left
bundle branch block, the septal strain pattern can behave in a pseudo-
normal fashion when the lateral wall is dysfunctional (e.g., due to
infarct scar).106

Segmental strain curves can be combined with estimated LV pres-
sure to obtain a measure of regional work performed per volume unit
of myocardium. Analysis of regional myocardial work distribution
may contribute to improved patient selection107; however, random-
ized trials involving these analyses are lacking. More information
may be found in contemporary consensus statements.108
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Clinical Consensus Statements
1. Patient candidacy for biventricular pacing may be enhanced by a careful

assessment of intraventricular dyssynchrony. Although visual and M-
mode assessment might be sufficient, both TDI-based and speckle-
tracking-based segmental strain analysis can be used to quantify intraven-
tricular dyssynchrony.

2. Care must be taken to characterize specific deformation patterns. General
time-to-peak comparisons are not sufficient for this purpose.

B. Cardio-Oncology

In terms of HF, most of the research in cardio-oncology has been con-
ducted in patients treated with anthracyclines, although the cardio-
toxicity of tyrosine kinase inhibitors and human epidermal growth
factor receptor 2 antibodies (such as trastuzumab) has also been
recognized.

The early identification of patients at high risk for developing car-
diac dysfunction and failure is important as symptoms are late and
at that stage the prognosis is poor.109 The identification of these pa-
tients before their chemotherapy is an attractive option. An abnormal
or low normal baseline LVEF has prognostic value in predicting which
patients treated with chemotherapy will develop cardiac events.110,111

The percentage of patients who have abnormal or low normal LVEF is
low, between 1% and 10% depending on the population.110,112

LVGLS has shown prognostic value in the prediction of overall
mortality in a general population of patients undergoing echocardiog-
raphy.113 The value of baseline LVGLS in predicting clinical outcomes
has also been recognized in a study of patients treated with anthracy-
clines.114 One of the most valuable applications of LVGLS may be in
patients with borderline LVEF. In a study of 158 patients with a base-
line LVEF of 50% to 59% subsequently treated with anthracyclines,
Mousavi et al.115 reported that strain added incremental value to the
LVEF, with a baseline strain less negative than�16% being associated
with an increased occurrence of symptomatic HF and cardiac death.

Several studies have reported that LVGLS decreases early during
treatment with anthracyclines, trastuzumab, or radiotherapy, even
when LVEF remains unchanged. Importantly, these early decreases
in LVGLS predict later decreases in LVEF.116,117 Multiple studies had
demonstrated the adverse prognostic value of an abnormal LVGLS
at baseline or decrease thereof during chemotherapy. A meta-
analysis of nine studies by Oikonomou et al.49 reported that patients
with an abnormal LVGLS during chemotherapy had an odds ratio of
12.2 to develop cancer chemotherapy-related cardiac dysfunction
(CTRCD). Similarly, patients with a relative decrease of LVGLS after
initiation of chemotherapy were 15.8 times more likely to develop
CTRCD than patients with unchanged strain. The magnitude of the
decrease after anthracycline treatment that is best predictive of later
LVEF decreases has been reported as a relative decrease of 10%
(change in LVGLS with sensitivity of 78% and specificity of
79%)117 and 11% (change in LVGLSwith sensitivity of 65% and spec-
ificity of 94%).118 Conservatively, a relative decrease of 15% (e.g., 3%
absolute decrease from a baseline of�20%) during chemotherapy, is
considered to be preclinical cardiac dysfunction.119,120 In the setting
of anthracycline chemotherapy follow-up studies have found reduc-
tions in LVGLS that appear to be segmental, with an apical-sparing
pattern, persistently reduced LVGLS in a minority of patients, and a
greater reduction in strain in those receiving higher cumulative an-
thracycline doses.121

Decreases in radial and circumferential strain have also been noted
after anthracyclines; no predictive value of radial strain has been
found, while the value of circumferential strain in predicting subse-
quent LVEF decreases has been reported by some investigators122

but its routine use in the clinical setting cannot be endorsed.
Comparable findings have been made outside of the breast cancer

population, confirming the utility of this STE across the spectrum of
cardio-oncology practice. Several studies now report similar findings
in the setting of lymphoma.123,124

Strain imaging can serve as a sensitive tool for detecting functional
abnormalities early, sensitively and with adequate specificity, but the
true, long-term consequences of these findings remain to be deter-
mined. The Strain Surveillance of Chemotherapy for Improving
Cardiovascular Outcomes (SUCCOUR) randomized study was de-
signed to assess whether a strain guided approach to cardioprotec-
tive therapy would outperform an EF-guided approach.50 It is
noteworthy that at 1 year, there was a suggestion of some beneficial
effect of the strain guided therapy on CTRCD. A follow-up study
was conducted 3 years after enrollment. LVEF recovered in most pa-
tients and there were no differences in LVEF or in the number of pa-
tients meeting CTRCD criteria in the strain guided or LVEF-guided
groups.125

Several guidelines and state-of-the-art reviews have recently been
published.126-128 The International Cardio-Oncology Society and the
European Society of Cardiology guidelines recognize an isolated rela-
tive decrease of $15% in GLS as mild CTRCD.126,127 Similarly, the
AmericanCollege of Cardiology cardio-oncology and imaging councils
state-of-the-art paper recognizes a decrease of that magnitude as
possible cardiotoxicity.128 In patients with an isolated decrease in strain,
optimizing risk factors and replacing any noncardioprotective ongoing
treatment by cardioprotective therapies if feasible is justified.7

Furthermore, strain imaging can be used to detect subclinical late ef-
fects of both chemotherapy and radiotherapy. More important, current
cardio-oncology guidelines advocate against the interruption of chemo-
therapy in the context of preserved LVEF and isolated falls in GLS.126

Recently, the results of the SUCCOUR magnetic resonance imaging
study were published, demonstrating a significant improvement in
magnetic resonance imaging–defined LVEF after commencing cardio-
protective therapy after the detection of CTRCDas defined by a >12%
relative reduction in LVGLS.129 This is an encouraging step forward for
the utility of STE in guiding therapeutic decisions.

Adult survivors of childhood cancer have been subjected to the
most investigations as they are at significant risk for cardiac
morbidity and mortality. Asymptomatic childhood cancer survivors
treated by both high dose anthracyclines and mediastinal radiation
demonstrate a significant reduction of LVGLS and LV global radial
strain in the absence of LVEF abnormalities.130,131 Additionally, sub-
clinical abnormalities of the right ventricle are demonstrated by us-
ing RVFWLS.132 Important information was collected from the St.
Jude Lifetime Cohort Study, a cohort of 1,820 adult survivors of
childhood cancer exposed to either anthracycline chemotherapy,
chest-directed radiotherapy, or both therapies (median age, 31 years
at the time of study; median time from diagnosis, 23 years).133 In this
population, abnormal LVGLS and altered LV diastolic function were
more prevalent than reduced 3D echocardiography–derived LVEF
and were associated with treatment exposure. Subclinical LV
dysfunction was identified in one-third of survivors with normal
LVEF. On the basis of these findings, a combined assessment of
LVEF and LVGLS plus LV diastolic function may be supported in
adult survivors of childhood cancer. However, long-term follow-up
studies are needed to establish the predictive nature of these echo-
cardiographic findings for major cardiac events and their clinical
relevance.



Figure 9 Strain imaging in patient with atypical symptoms, no chest pain, and no signs of ischemia in the electrocardiogram. Each
trace represents one LV segment. Possible inferior wall hypokinesis on grey scale imaging. Strain imaging showed moderately
reduced systolic shortening and marked postsystolic shortening in the inferior wall (red circle). The patient was referred for angiog-
raphy, which revealed a subtotal stenosis of the right coronary artery (right) andwas successfully treated with percutaneous coronary
intervention. ANT, Anterior; ANT_SEPT, anteroseptal; AVC, aortic valve closure; ES, end-systole; INF, inferior; LAT, lateral; POST,
posterior; RCA, right coronary artery; SEPT, septal. Reproduced with permission from Smiseth et al.136
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Clinical Consensus Statements
1. Strain should be performed at baseline in all patients undergoing chemo-

therapy with anthracyclines.
2. It is reasonable for strain to be measured at baseline in all patients undergo-

ing radiotherapy or nonanthracycline chemotherapy.
3. Strain should be obtained early after chemotherapy with anthracyclines to

identify subclinical cardiotoxicity
4. Patients with baseline strain lower than normal limits should undergo echo-

cardiography with strain at mid treatment.
5. In patients with a relative decline of strain of more than 12%, it is reasonable

to consider treatment with cardioprotective therapy, whatever the change
in LVEF.

6. Strain imaging should be incorporated in the follow-up echocardiographic
examinations performed in survivors of childhood cancer.
C. Ischemic Heart Disease

a. Diagnosis and Localization of Infarction. The reliability of
visual estimation of regional wall motion and thickening abnor-
malities on 2D echocardiography for diagnosis and localization
of acute MI (AMI) is dependent on the expertise of the examiner
and time elapsed following the ischemic insult. GLS and SLS anal-
ysis provides more objective information and better diagnostic ac-
curacy to diagnose significant coronary artery stenosis in patients
who have suspected non–ST-segment acute coronary syn-
drome.134 Even in patients without apparent regional wall motion
abnormalities on visual analysis, GLS and SLS were significantly
more impaired in patients who had significant coronary artery ste-
nosis than those without stenosis (Figure 9).135,136 However, 2D
strain analysis has no clear additional value in the setting of acute
ST-segment elevation MI (STEMI), as these electrocardiographic
findings alone mandate an early interventional strategy.
b. Detection of Myocardial Ischemia. LVGLS analysis has the
potential to detect latent LV dysfunction that is associated with
myocardial ischemia due to significant coronary artery stenosis. A sys-
tematic review andmeta-analysis of the diagnostic accuracy of LVGLS
to predict significant coronary artery stenosis in patients presenting
with acute and chronic chest pain (six studies, 781 patients, 397
with significant coronary artery stenosis) revealed that LVGLS mea-
surements at rest have only modest diagnostic accuracy.137 The cutoff
values of LVGLS for prediction of significant coronary artery stenosis
varied between �17.4% and �19.7% with sensitivity of 51% to 81%
and specificity of 58% to 81%. A preferential reduction of endocar-
dial layer strain has been reported in patients who had normal wall
motion but flow-limiting coronary stenosis ($99% diameter steno-
sis),138 but these results need to be verified in larger studies.

It has been hoped that application of 2D strain analysis may over-
come the subjectivity and need for expertise of stress echocardio-
graphic interpretation. Compared with visual analysis, 2D strain
analysis with use of GLS or SLS values at peak stress had a higher
sensitivity but a lower specificity, resulting in the similar diagnostic ac-
curacy of the two methods.139-143 The primary cause of lower
specificity could be related to the unreliable myocardial speckle-
tracking due to vigorous myocardial contraction and altered loading
conditions at higher heart rates, which produces artificially more nega-
tive strain values, pointing to the need for higher than usual frame
rates. Another limitation of this application of 2D strain analysis is
that there are no definite and universal cutoff values for diagnosing
significant coronary artery stenosis. Regional heterogeneity of strain
values may be exaggerated during stress even in healthy subjects,144

resulting in difficulty determining optimal regional strain cutoff values.
More detailed analysis of regional strain curves, especially assessment
and measurement of postsystolic shortening, is likely to be superior to
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regional cutoffs, but this has not been proven for clinical practice.
Recall also (section 2) that regional strain pattern analysis relies partic-
ularly on vendor-dependent analysis software fidelity, which limits its
utility.22

c. Assessment of Myocardial Viability. two-dimensional strain
analysis can provide objective information to predict LV functional re-
covery after AMI. Supplemental Table 5 shows moderate diagnostic
accuracy of GLS and SLS to predict LV functional recovery after cor-
onary revascularization, albeit with different criteria for recovery
among studies. In postinfarction patients, an increase in LVGLS
with low-dose dobutamine was associated with better wall motion
at 1 month.145

Despite the high success rate of primary percutaneous coronary
intervention, LV adverse remodeling occurs in one-third of patients
following AMI. Myocardial deformation analysis can be used for
the prediction of LV adverse remodeling during follow-up (see
Supplemental Table 6). Proposed cutoff values of LVGLS for predict-
ing LV adverse remodeling range from �10% to �15%, with an area
under the receiver operating characteristic curve of 0.73 to 0.88. The
findings were consistent with a previous meta-analysis showing that
LVGLS was associated with adverse LV remodeling with optimal cut-
off values very close to 11% in most studies.146 LVGLS also provides
significant incremental value over clinical and conventional echocar-
diographic parameters in predicting adverse LV remodeling in some
studies.147-149 Although LV circumferential strain and LV torsion
have also been reported for the assessment of myocardial viability,
the evidence is currently too sparse to justify their clinical use.

d. Risk Stratification After MI. LVGLS predicts long-term
adverse outcomes and provides incremental value over conventional
echocardiography parameters in patients with AMI treated by pri-
mary percutaneous coronary intervention (see Supplemental
Table 7). As the primary end point was different among studies, the
absolute cutoff values of GLS varied from 9.3% to 15.1%, but all
studies consistently showed that decreased LVGLS was significantly
associated with adverse outcome. Meta-analysis using a random ef-
fects model revealed that for each 1% reduction in LVGLS, the hazard
ratio for adverse outcome was increased by 34%. The robustness of
LVGLS has also been verified after adjusting for conventional echo-
cardiographic parameters, such as LVEF or in the subgroup of patients
who had LVEFs >40%.150-152 Less information exists regarding the
prognostic role of layer-specific strain analysis and 3D speckle-
tracking analysis, and these cannot be advised for routine clinical
use at present. A recent study showed that LV midwall GLS is better
than endocardial GLS for predicting adverse outcome in patients with
acute coronary syndrome.153

RV LS also has prognostic value after MI. In 621 patients with AMI
who were treated with primary coronary intervention, univariate
analysis revealed that RVFWLS was significantly associated with all-
cause mortality.154 RVFWLS had an independent incremental value
over clinical variables and LV function parameters including LVEF,
E/e0 ratio, and mitral regurgitation (MR).

Clinical Consensus Statements
1. GLS or SLS patterns (as opposed to quantitative values) may assist in eval-

uation of patients with non-STEMI acute coronary syndrome, especially
with negative cardiac biomarkers, no dynamic electrocardiographic
changes, and no apparent regional wall motion abnormalities.

2. Two-dimensional strain analysis of LVGLS or SLS may be performed at
early phase of AMI after percutaneous coronary intervention for the predic-
tion of functional recovery, LVadverse remodeling, and risk for adverse out-
comes.

3. RV strain analysis is feasible if an RV-focused view with good image quality
is acquired for the analysis. This may be useful in assessing RV infarction us-
ing RVFWLS.
D. Valvular Heart Disease

The assessment of myocardial function in the context of significant
valvular heart disease remains highly challenging. Current guidelines
support valve replacement/repair in cases of severe valvular heart dis-
ease that cause symptoms or reduced LVEF, but LVEF may be within
the normal range in these patients.155,156 Assessment of LV deforma-
tion analysis using echocardiography or CMR provides amore sophis-
ticated approach to study both regional and global chamber
function.157

a. AS. Basal LS less negative than �13% has been reported to pre-
dict an abnormal exercise response in patients with AS, with sensi-
tivity and specificity of 77% and 83%, respectively (area under the
curve, 0.81; P < .01).158 Impaired LVGLS was also associated with a
higher LV mass index and relative wall thickness, which supports a
direct connection between concentric remodeling and contractile
dysfunction. Among recent prognostic studies,159-161 a study in 163
patients with asymptomatic moderate to severe AS provided
evidence that LVGLS less negative than a cutoff �15.9% was an
independent predictor of adverse events (occurrence of symptoms,
aortic valve replacement [AVR], or death). Also, Adda et al.162 demon-
strated that longitudinal LV dysfunction was particularly impaired in
patients with AS with low flow. Patients with low-flow, low-gradient
AS showed a significant reduction in basal LS compared with patients
with normal-flow, high-gradient AS (�11.66 3.4% vs�13.66 3.2%,
P < .05). The sensitivity and prognostic value of LS have been partic-
ularly helpful in asymptomatic patients (see Supplemental
Table 8).163-166 The clinical value of strain data in AS might be
more controversial in symptomatic patients, in whom intervention
is already indicated.167 However, using only the apical four-
chamber view, LS predicted death in patients with AS and preserved
LVEF.168 In the low-flow, low-gradient subgroup, LS is an important
parameter to help manage these patients.

In patients with severe LV hypertrophy and a low-flow state, the LS
pattern sometimes offers diagnostic information beyond prognosis.
An apical-sparing pattern often suggests transthyretin-related cardiac
amyloidosis unrelated to the AS. When this strain pattern is observed,
nuclear based scintigraphy studies (99mTc-hydroxymethylene di-
phosphonate, 99mTc-pyrophosphate, or 99mTc-3,3-diphosphono-
1,2-propanodicarboxylic acid) on the basis of local availability and
expertise, should be performed to look for cardiac uptake of the
tracer, which is highly diagnostic of transthyretin-related cardiac
amyloidosis.169

An individual participant data meta-analysis has been performed
by the EACVI in patients with severe asymptomatic AS. Eight studies
were pooled and thus, it has been demonstrated that LVGLS per-
formed well in the prediction of death (area under the curve, 0.68).
The best cutoff value identified was LVGLS of �14.7% (sensitivity,
60%; specificity, 70%), which increases the risk for death by 2.5-
fold170 in patients with severe asymptomatic AS. Furthermore, a
recent meta-analysis of 12 studies demonstrated the prognostic value
of LVGLS in the preprocedural assessment of patients with severe AS
undergoing transcatheter AVR, with a less negative LVGLS having a



Key Points

� Because LVGLS is a continuous parameter, in valvular heart dis-

ease establishment of absolute cutoffs is less meaningful than

recognizing that as strain magnitude decreases, prognosis

worsens in a continuous manner.

� There should be supranormal LVGLS if LV contractile function

is normal in patients with valvular disease that results in

increased preload and reduced volumetric afterload (AR, TR,

and primary MR).
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higher risk for all-cause mortality and major adverse cardiovascular
events compared with patients with more negative LVGLS.171

b. Aortic Regurgitation. Current valve guidelines rely on LV
diameter and LVEF to guide timing of surgery in patients with aortic
regurgitation (AR).155 More sensitive tools are needed, and LS has
been studied in patients with AR. In medically treated patients,
LVGLS of �18% was the best cutoff for identifying disease progres-
sion to symptoms or HF, while a cutoff of �14% was predictive of
poor outcome in patients undergoing AVR.172,173 In patients with
moderately severe and severe AR, resting LV strain was also a strong
independent predictor of the need for early AVR together in addition
to other RV functional parameters such as exercise TAPSE and resting
RVFWLS. Also, patients with LVGLS less negative than the median
value of �19.5% were more likely to have a shorter survival, seen
mostly in patients who did not undergo AVR. When the authors
compared patients with LVGLSmore negative than the median value
who received AVRwith those with preserved LVGLS but who did not
undergo AVR, there was a twofold increased mortality (�8% vs
�15% favoring AVR, P = .08). Importantly, LVGLS was indepen-
dently associated with all-cause mortality (hazard ratio, 1.11 per 1%
decrease; P = .003) after multivariate Cox proportional-hazards
model adjustment and provided incremental prognostic value to
the existing prediction model. All these studies had relatively brief
follow-up and used a variety of end points including 1-year survival,
need for AVR, changes in LV dimensions, and alleviation of symp-
toms. Whether LVGLS might provide superior risk discrimination in
patients with chronic AR and preserved LVEF regarding the timing
for aortic valve intervention remains unclear. Further large studies
with consistent end points are needed.

c. MR. In patients with severe primary MR, LVEF may remain in the
normal range for long periods of time, even after alterations in
contractility develop. The earlier detection of LV contractile dysfunc-
tion is of pivotal importance and favors the timely surgical correction
of chronic MR, which usually restores normal LV contractile func-
tion.157 LVGLS has been demonstrated in many studies as a more
robust and sensitive diagnostic or prognostic tool than LVEF. Like
LVEF, LVGLS should be more negative than �20% in patients with
augmented preload and a decrease in volumetric afterload as occurs
in MR patients. As LVGLS decreases, prognosis worsens, suggesting
early MR intervention (surgical or transcutaneous valve repair; see
Supplemental Table 9). In asymptomatic patients with significant pri-
mary MR and preserved LVEF who underwent mitral valve surgery,
brain natriuretic peptide (BNP) and LVGLS provided synergistic risk
stratification, independent of other established factors.174

In secondaryMR, LVGLS data have been used to demonstrate that
surgical and transcatheter mitral valve repair in nonischemic dilated
cardiomyopathy improved LV forward flow and induced LV reverse
remodeling but did not change LV systolic function.175 There has
been some recent evidence to also support its role in predicting out-
comes after transcatheter edge to edge repair.176

d. Mitral Stenosis. Strain studies in patients with mitral stenosis
(MS) have shown significant reductions in LV stroke volume and
LVGLS compared with normal subjects. Sengupta et al.177 found
that nearly 85% of patients with severe MS have LVGLS in the lowest
quartile of the control subjects. LV end-diastolic volume in these pa-
tients was the strongest determinant of LVGLS, suggesting that
reduced preload results in the perceived impairment in LV contractile
performance in MS to a great extent.
e. Tricuspid Regurgitation. Severe tricuspid regurgitation (TR)
carries a poor prognosis, driven primarily by impaired RV systolic
function. Although the data are limited, several studies support the in-
cremental prognostic value of RVFWLS over traditional parameters of
RV systolic function such as fractional area change and TAPSE. Prihadi
et al.178 demonstrated an incremental less negative RVFWLS over
fractional area change and TAPSE in predicting all-cause mortality
in 896 patients with significant functional TR using a cutoff less nega-
tive than �23%. A subsequent study performed in 115 consecutive
patients undergoing isolated surgery for severe functional TR found
that a preoperative RVFWLS less negative than�24%was predictive
of all-cause mortality and unplanned cardiac readmissions over 5-year
follow-up after surgery.179
Clinical Consensus Statements
1. LVGLS is a useful prognostic factor in AS, particularly asymptomatic pa-

tients and in the low-flow, low-gradient subgroup. A recent meta-analysis
suggests that LVGLS less negative than �14.7% increases the risk for death
by 2.5-fold in severe asymptomatic AS.

2. Less negative LVGLS has been associated with worse outcomes in both
medically and surgically managed patients with AR, although the optimal
cutoff has not been defined.

3. In patients with severe primary MR, LVGLS should be supranormal with
adverse prognosis observed when strain is less negative than �20%. Pa-
tients with LVGLS less negative than �20% should be carefully monitored
and mitral valve intervention may be appropriate as clinically indicated.

4. Strain is less well established in patients with functional MR, with no well-
established cutoff to guide timing of intervention.

5. RVFWLS may be used in patients with significant TR to risk stratify before
intervention, with values less negative than�23% suggestive of poorer out-
comes.
E. RV Strain

Although RVLS can bemeasured using TDI,180most evidence comes
from 2D STE. Themost accurate and reproducible measurements are
obtained from the apical RV-focused view, which optimally lays out
the RV free wall (Figure 10).181 RV speckle-tracking requires good im-
age quality at 60 to 90 Hz without foreshortening, dropout, or rever-
berations.14 RV LS is less confounded by overall heart motion,
translation, and loading conditions compared with other measures
of RV longitudinal function such as TAPSE and TDI-derived S0 veloc-
ity.182

As for the left ventricle, most evidence relates to RV strain in the
longitudinal direction, which is the advised parameter.24 The RV
free wall is too thin to allow accurate computation of transversal
(radial) strain despite some support for this,183-185 and this
parameter is not advised for clinical use.14 Similarly, as there are no



Figure 10 Demonstration of different RV strain value acquisition from variations of RV transthoracic windows. Obtaining RV strain
measures from the apical RV-focused view is more accurate. Here is an example of incrementally higher RV GLS obtained from
an apical RV-focused view compared with an apical four-chamber (A4C) view.

Figure 11 Workflow for obtaining accurate RV strain measurements. Following the order of steps from 1 to 8 and optionally deselect-
ing the septum to produce RVFWLS will result in accurate and reproducible RV strain parameters. Long, Longitudinal; PVC, pulmo-
nary valve closure; RVOT, RV outflow tract.

Journal of the American Society of Echocardiography
Volume - Number -

Thomas et al 19
oblique fibers in the right ventricle, torsion contributes little to overall
RV contraction.

a. Image Acquisition and Postprocessing of RV LS. The
endorsed view for RV STE obtained from the standard apical four-
chamber view is obtained by counterclockwise rotation and medial
angulation to maximize the RV diameter. In this view, the LV apex
is centered in the imaged sector, while showing maximal RV dimen-
sions (both longitudinal and transverse), and the entire RV free wall
are evident throughout the cardiac cycle (Figure 11).14 This view
should show the interatrial septum but not the aortic valve (too ante-
rior) or coronary sinus (too posterior). Of note, strain values obtained
from the RV-focused view are greater in magnitude than those ob-
tained from standard apical four-chamber views,181 emphasizing the
importance of view standardization for patient follow-up and setting
normal reference values (see section 3).14 The ROI should include
both the RV free wall and interventricular septum, with width
adjusted to the thickness of the RV free wall (approximately 5 mm



Figure 12 Strain patterns of the basal segment of the RV free wall (yellow curve) in patients with confirmed arrhythmogenic cardio-
myopathy affecting the right ventricle. Type I, normal deformation of the basal segment, which is synchronous with the other RV seg-
ments; type II, delayed onset (yellow dot) and reduced extent of the end-systolic deformation (red dot) with evident postsystolic
shortening (yellow arrow); type III, prominent early systolic stretching (red arrow) with shallow values of end-systolic strain (red
dot) and most of the deformation occurring after the closure of the pulmonary valve (yellow arrow). GS, Global strain; FWLS, free
wall longitudinal strain; PVC, pulmonary valve closure; PVO, pulmonary valve opening.
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normally and larger with RV hypertrophy). Assessment of RV strain is
easier and more reproducible with dedicated RV strain software.31

The RV free wall includes three segments (basal, mid, and apical),
which have equal lengths at end-diastole. The septum is similarly
segmented. For reporting RVLS, the average of the free wall segments
is advised and should be labeled as RVFWLS. If septal segments are
included in the strain average, this should be noted clearly, as global
RV LS (labeled RV four-chamber LS), which includes both free wall
and septal segments, is usually smaller in magnitude than three-
segment RVFWLS.186

Finally, in addition to amplitude parameters, temporal parameters
such as the time to peak strain (R wave to peak RV shortening) can
also be assessed. RV mechanical dispersion can be calculated as the
SD of time to peak strain in a six-RV-segment model,187 which is
more robust than using the RV free-wall segments only.188 Note
that the evidence base for RV dispersion is much smaller than for
the left ventricle.189

b. Clinical and Prognostic Value in Different Cardiac

Conditions. There is an increasing body of literature for the clinical
and prognostic value of RV strain in various cardiac conditions (see
Supplemental Table 10).190,191

Pulmonary Hypertension and Heart Failure–RV function is a
major determinant of prognosis in patients with pulmonary hyperten-
sion (PH), irrespective of etiology,192 with strain playing an increasing
role in prognostication. In pulmonary arterial hypertension (PAH), RV
strain was significantly worse than in patients without PH193 and
correlated with invasive pulmonary pressure and vascular resis-
tance,193-195 BNP and 6-minute walk distance,194-196 and
occurrence of cardiovascular events during follow-up (see
Supplemental Table 10).196-203 Moreover, improved RV strain
parameters were associated with improving pulmonary pressure
and vascular resistance194 and 6-minute walk distance204 with treat-
ment. Finally, a good correlation between RVFWLS and RVEF by
CMR has been reported.195,203,205

An increasing body of literature demonstrates the utility of RV
strain for outcome prediction in patients with both acute and chronic
HF (both HFrEF and HFpEF; see Supplemental Table 3). RVFWLS is
also predictive of RV failure following LVAD implantation.206

Ischemic Heart Disease–In survivors of STEMI, RV strain is prog-
nostic and independently associated with adverse clinical outcomes
incremental to clinical, infarct size and other LVand RV functional pa-
rameters. Similar results were also reported in patients with ischemic
cardiomyopathy (see Supplemental Table 10).

ARVC–In patients with ARVC, RVFWLS can detect early (subclinical)
regional RV dysfunction before conventional echocardiogra-
phy188,207 with three characteristic deformation patterns identified:
type I, normal deformation; type II, delayed onset of shortening,
reduced systolic peak strain, and mild postsystolic shortening; and
type III, systolic stretching with large postsystolic shortening
(Figure 12).208 Finally, RV strain–derived mechanical dispersion can
stratify the arrhythmogenic risk of patients with ARVC (Figure 13).187

Systemic Sclerosis–RVFWLS can detect occult regional and global
RV dysfunction regardless of RV systolic pressure and systemic scle-
rosis phenotype.209

c. Future Perspectives. Much reference data for RV strain has
been obtained from conventional apical four-chamber views using
LV software adapted to the right ventricle. It is important to deter-
mine the intervendor consistency of measurements obtained from
the RV-focused four-chamber view and software specific to the
right ventricle. Majority of data diagnostic and prognostic for RV
strain have been obtained in single center-studies, mandating future
multicenter, prospective studies. Finally, RVFWLS samples only a
limited amount of the RV myocardium, resulting in an incomplete
evaluation of the right ventricle. Although 3D echocardiography
has the potential for strain analysis of the entire right ventricle,210

technical and geometric issues currently limit this to the investiga-
tional realm.

Recently, the ratio of RVFWLS to pulmonary artery systolic pres-
sure ratio has been validated as a measure of RV–pulmonary artery
coupling against RVend-systolic elastance/arterial elastance obtained
invasively with conductance catheterization211 and found to be inde-
pendently prognostic in patients with PAH,212 severe TR,213 HFpEF,93

and secondary MR in the Cardiovascular Outcomes Assessment of
the MitraClip Percutaneous Therapy for Heart Failure With
Functional Mitral Regurgitation (COAPT) trial.214 Similarly, myocar-
dial work index quantified by integrating RVFWLS with invasively
measured RV pressure can predict decompensation in heart trans-
plant recipients.215 These studies confirm the pathophysiologic link-
age among TR, RV and LV function, and pulmonary artery systolic
pressure to each other.



Figure 13 Example of RV mechanical dispersion in arrhythmogenic cardiomyopathy. RV mechanical dispersion (MD) in an asymp-
tomatic mutation carrier (left) and an arrhythmogenic cardiomyopathy patient with recurrent arrhythmias and implanted intracardiac
defibrillator device (right). White vertical arrows indicate the timing of maximum myocardial shortening in each segment of the right
ventricle. MD is more prolonged and clinically significant in the right panel. FR, Frame rate; GS, global strain; FWLS, free wall longi-
tudinal strain; HR, heart rate; Sept, septum.

Key Points

� To obtain accurate and reproducible measurements of RV LS

by 2D STE, an RV-focused apical four-chamber view acquired

between 60 and 90 frames/sec should be used.

� An echocardiographic examination bed with a cutout at the

level of the cardiac apex makes it easier to position the patient

on the left side, to obtain a proper RV-focused apical view as

described above.

� Both the dedicated RV software packages and the adaptation

to the right ventricle of software packages developed for the

left atrium provide the samemeasurements of RV LS, provided

that the ROI of the latter is manually adapted to the right

ventricle, and its thickness reduced to 5 mm. Assessment is

easier and more reproducible with the dedicated RV soft-

ware.31
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Clinical Consensus Statements
1. Among the parameters obtained by measuring RV longitudinal deforma-

tion, the free wall LS is the parameter with the most robust documentation
of its diagnostic and prognostic value in a variety of clinical conditions, and
in the general population of patients referred for echocardiography.

2. Normal values of RVFWLS are sex-specific but do not change with age (see
section 2).

3. RVFWLS should be measured and reported (when technically feasible) in
patients with evidence for RVenlargement, regional or global dysfunction,
moderate or greater TR, or PH.
F. LA and Right Atrial Strain

a. LA Strain. LA dynamics includes three mechanical phases that
modulate LV filling: reservoir (in LV systole), conduit (pre-A-wave
diastole), and active contraction (late diastole). LA strain is deter-
mined largely by LV strain and modulated by the ratio of LV and
LA volumes. Nevertheless, it also integrates information on filling
pressures and LA myocardial properties.216 LA strain measurements
have been successfully validated against LA pressure and pulmonary
capillary wedge pressure in multiple studies,217,218 and LA strain has
shown prognostic value in several clinical settings.219,220

b. Quantification of LA Strain. LA strain is preferentially
measured by speckle-tracking. To do this, LA endocardial borders
are traced manually or automatically on high-quality 2D images ob-
tained at a frame rate between 50 and 90 frames/sec. The EACVI/
ASE task force endorses using the LA strain value obtained from non-
foreshortened apical four- and two-chamber views, although apical
four-chamber strain alone is also commonly performed and shown
to be useful.14 Dedicated LA strain software should be used when
available, to reduce measurement variability.31

Two different temporal gating approaches are available to quantify
LA strain by STE. Figure 14 shows findings in a normal subject
(Figures 14A and 14B) and a patient with HF (Figures 14C and
14D). The first approach (Figures 14A and 14C) takes the
electrocardiography-derived QRS onset as the starting point (R-R
gating) and measures two key LA deformations: the first (LASr, cor-
responding to LA reservoir) peaks at the end of LV systole (corre-
sponding to AVC), and the second, LASct, occurs late and
corresponds to LA contraction. The difference between LASr and
LASct represents LAScd. The second gating approach (Figures 14B
and 14D) uses the electrocardiographic P wave as the starting point
(P-P gating), enabling the measurement of two deformations, the first
down-sloping, which corresponds to LASct, and the second up-
sloping, which corresponds to atrial relaxation and reservoir function.
The peak LA strain in this gating is approximately conduit strain, so
the sum of LAScd and LASct represents LA reservoir function
(LASr). Note that the atrial parameters are smaller for P-P gating
than R-R gating, as the starting length of the atrium is smaller after
atrial contraction, so the percent change in length is greater. P-P gating
cannot be applied to patients with atrial fibrillation (AF). Moreover,
most published studies used R-R gating, making it the de facto



Figure 14 Examples of LA strain acquisitions across varying timing methods. LA strain findings in a normal subject (A, B) and a pa-
tient with HF (C, D). One approach to timing (A, C) takes the electrocardiography-derived QRSonset as the starting point (R-R gating).
The second gating approach (B, D) uses the electrocardiographic P wave as the starting point (P-P gating). See text for details.
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preferredmethod for measuring LA strain. The Strain Standardization
Task Force consensus publication demonstrates that values obtained
with R-R gating can be translated into corresponding findings using
P-P gating and vice versa.14 It is also possible to approximate reservoir
strain from changes in LA volume throughout the cardiac cycle.221

c. Strengths and Weaknesses of LA Strain. The strengths of
LA strain include its pathophysiologic value and the validation with
invasive measurements of LA pressure and LV filling pressures. The
principal weakness relates to difficult strain measurement in some
LA regions, such as the LA roof in the apical four-chamber view (inter-
ference from pulmonary vein outlet)222 and the apical two-chamber
view (interference from enlarged LA appendage). In general, howev-
er, the tracing of LA borders is easy, with feasibility of biplane strain
demonstrated in 94% of 84 healthy subjects223 with acceptable
reproducibility for clinical use demonstrated in limited data.

d. AF. AF is associated with thromboembolism, HF, and substantial
health care costs, mandating awareness of LA structural and func-
tional risk factors for AF development. LA enlargement is a clear pre-
dictor of AF development and recurrence after cardioversion, but this
geometric abnormality is a late marker of disease progression.
Accordingly, research has recently focused on early functional
changes that occur before structural changes. Impairments of reser-
voir function can be detected with LA strain imaging even before
atrial dilatation occurs. LA fibrosis, thought to be a hallmark of struc-
tural remodeling that contributes to the AF substrate, increases LA
stiffness and worsens LA reservoir and contractile function.224
e. New-Onset AF and Progression in At-Risk Patients. New-
onset AF is relatively common in patients at high cardiac risk or
receiving electrical devices (see Supplemental Table 11). In patients
with HF, LA strain could be used to predict the risk for AF develop-
ment.225 In patients receiving pacing devices, LA size, LA strain,
and electromechanical conduction were associated with develop-
ment of incident AF.226 Sade et al.227 also demonstrated that the
change in LA strain at the time of atrial contraction, either systolic
or late diastolic, predicted new-onset AF in patients receiving resynch-
ronization therapy. A recent study demonstrates that right atrial (RA)
strain is more predictive of AF recurrence than is LA strain.228

f. After Rhythm Control of AF. Electrical cardioversion and cath-
eter ablation are effective to restore sinus rhythm in AF, but unfortu-
nately, AF recurs in 26% to 52% of patients (see Supplemental
Table 11). Enlarged LA volume, long AF duration, and advanced
age are known predictors of AF recurrence. LA strain is also a strong
predictor of AF recurrence after cardioversion or catheter abla-
tion,229-232 as well as an important predictor of LA reverse
remodeling during long-term follow-up.233 However, because of
the lack of data regarding vendor variability,234 no cutoff values for
LASr have been proposed for recurrent AF after catheter ablation.
More recent evidence supporting the predictive value of incremen-
tally impaired RA reservoir strain (RASr) for recurrent AF after cardio-
version has emerged.235

g. Cryptogenic Stroke. In patients with ischemic stroke, the cause
is unknown at the time of discharge in a quarter of patients, in whom
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silent paroxysmal AF may be an important cause.236 Although im-
planted cardiac monitoring significantly increases the detection of si-
lent AF, this is often not applied in routine practice. LASr has been
reported to predict AF in patients with cryptogenic stroke. Pagola
et al.237 demonstrated that LA strain may predict paroxysmal AF
over a 3-year period of Holter monitoring.
Clinical Consensus Statements
1. LASr, in addition to conventional 2D and Doppler echocardiographic pa-

rameters, provides information on early detection of functional change
and fibrosis of the LA with reasonable reproducibility. However, LASr is
not routinely advised but may be appropriate to predict new-onset AF in
at-risk patients as well as recurrence after rhythm control.

h. Diastolic Function and HFpEF. The left atrium is not a passive
transport chamber but is highly dynamic and responds by stretching
to protect the pulmonary circulation from high pressures. For this
reason, the left atrium plays a major role in incident HF, diastolic
dysfunction and HFpEF.238 LA size represents the chronic burden
of LV filling pressure and is associated with prognosis in HF. LASr
has been proposed as an alternative approach for LV filling pressure
assessment,218 and it is closely related to exercise tolerance and N-ter-
minal pro-BNP level.239,240 LASr is a powerful independent prog-
nostic parameter in HFpEF.239,241 In the Treatment of Preserved
Cardiac Function Heart Failure With an Aldosterone Antagonist
(TOPCAT) trial, however, although LASr in HFpEF was associated
with adverse outcomes, concomitant impairment of LV function
largely explained the association of LA dysfunction with clinical
outcome.242 For noninvasive estimation of LV filling pressure, LASr
does play an additive role to conventional Doppler parameters and
LA volume index. There is evidence to support its robust correlation
with elevated filling pressures. In a single-center prospective study of
139 patients, LASr < 23% had superior prediction of invasive LV
filling pressures as measured by pre-A-wave LV catheterization mea-
sures.243 A large multicenter international study of 322 patients
demonstrated that LASr of <18% was determined as the optimal cut-
off for elevated filling pressures when predominantly using end-
expiratory pulmonary capillary wedge pressure as the reference stan-
dard.244 Because of the validation across multiple sites, the writing
committee believes that using LASr < 18% would provide the
optimal balance of sensitivity and specificity for determining elevated
filling pressures.

i. RA Strain. RA dynamics are similarly characterized by three sepa-
rate phases: RA reservoir, conduit, and contraction. Normal reference
values of RA strain have been generated in a healthy population of
200 subjects in a single-center study.245 The normal value of RA
GLS (corresponding to reservoir strain or RASr) was 44 6 10%.
Some studies have evaluated RA strain in patients with PAH, TR,
and pulmonary embolism.246 In a recent meta-analysis for normal
ranges of RA strain, Krittanawong et al.247 identified 4,111 subjects
from 21 studies and found a mean RASr of 44%, RA contractile strain
of 17%, and RA conduit strain of 18%. However, these studies were
performed across different vendors, and the impact of this variation
on the findings is yet to be determined. Further investigations are
therefore needed to support the use of RA strain in the clinical setting.
Key Point

� RA strain can be measured using R-R gating in the RV-focused

apical four-chamber view.
Clinical Consensus Statements
1. LA strain should be measured using R-R gating in the apical four-chamber

view in suspected cardiomyopathic or arrhythmic conditions.
2. Impaired LASr of <18% is associated with elevated LV filling pressures.
3. Currently, RA strain is not advised for clinical practice.
G. Exercise and Dobutamine Stress Echocardiography

The recognition of regional wall motion abnormalities is the corner-
stone of detection of coronary disease by echocardiography.
Abnormalities present at rest denote the presence of scar or dysfunc-
tional but potentially viable myocardium (the latter defined by
augmentation of function in response to pharmacologic stimulation,
usually by dobutamine). Ischemia is denoted by regional dysfunction
in response to stress. Unfortunately, all these regional changes are sub-
jective; they may be subtle to identify and are dependent on exper-
tise.248 In addition, assessment of regional function shows
interobserver variability related to both the severity and extent of
the regional abnormality, as well as image quality.249 Access to a reli-
able and objective means of assessing regional function has been
sought for decades, and there was hope of deformation imaging filling
this role. This remains a work in progress.

a. Coronary Artery Disease. Most of the evidence regarding
normal strain and strain-rate responses to stress have been gathered
with dobutamine. Deformation imaging with exercise is inherently
noisier than pharmacologic stress, and quantitation become more
difficult. It requires a much higher frame rate than usual (likely
>100 Hz) to maintain sufficient temporal resolution with tachycardia.
Strain has a nonlinear response to stress with no further increment or
decline at dobutamine infusion rates >20 mg/kg/min. In contrast,
strain rate continues to increase to peak dose dobutamine, in propor-
tion to LV dP/dt, and is therefore the optimal quantitative deforma-
tion marker for this purpose. Unfortunately, while the temporal
resolution of tissue Doppler strain rate is high enough to use for this
purpose, this technique is cumbersome with virtually no clinical up-
take. The temporal resolution of current speckle-tracking is inade-
quate for reliable measurement of strain rate. The ASE/EACVI task
force on strain standardization has shown differences in test-retest
variability and measured values250 that lead to significant concern
about the ability of myocardial deformation to reliably quantify
regional function.26

Despite difficulties in quantifying myocardial function during
stress, deformation imaging can still recognize ischemia on the basis
of changes of the deformation waveform.251 The hallmark of
ischemia is delayed relaxation which is reflected in the most useful
parameter of postsystolic shortening (quantified from strain curves
as postsystolic index; Figure 15).3 Its measurement is based on a reli-
able recognition of the start and end of systole, which may require
manual override of automated timing. Nevertheless, using a single
parameter is likely to prove inferior to assessing the shape of the
curve.3,26 Postsystolic shortening is a sensitive but nonspecific marker
for ischemia and may also be seen in a regional scar. A particularly
interesting aspect is that it may persist following resolution of
ischemia: the phenomenon of ischemic memory.252
Clinical Consensus Statements
1. Two-dimensional strain analysis at rest or during stress echocardiography

may be appropriate for predicting significant coronary artery stenosis, espe-
cially in patients with good image quality. However, there is no specific
quantitative cutoff, and the best results are obtained by analysis of the strain



Figure 15 Postsystolic shortening during stress echocardiography. Tissue Doppler acquisitions taken during dobutamine stress
echocardiography of the mid (turquoise curves) and distal (yellow curves) septum. At baseline, both segments show systolic short-
ening of normal amplitude. At peak stress, the ischemic segment (yellow) develops postsystolic shortening (yellow arrows).3 AVC,
Aortic valve closure; AVO, aortic valve opening; MVC, mitral valve closure; MVO, mitral valve opening.
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and strain-rate waveforms for which, in contrast to TDI, STE generally has
an inadequate frame rate.
b. Valvular Heart Disease

Improving the sensitivity and risk stratification of stress echocardiog-
raphy through the addition of strain measures is an emerging para-
digm for advanced assessment of asymptomatic severe valve
disease. However, there is a paucity of data in this area, with only a
few studies addressing its value in patients with severe MR. Magne
et al.253 demonstrated that a lack of 2% improvement in LVGLS at
peak stress in patients with asymptomatic severe primary mitral valve
regurgitation was predictive of poorer 3-year event-free survival and
was incrementally superior to LVEF contractile reserve for prognosti-
cation.

Clinical Consensus Statements
1. Although attractive on theoretical grounds, the use of stress deformation in

valvular heart disease has technical challenges and inadequate evidence to
support clinical application.
H. Applications of Strain in CHD

Globally, CHD affects approximately 8.2 per 1,000 newborns with
>90% of patients in the United States and Europe living into adult-
hood.254-256 This reflects significant advances in medical therapies
and surgical interventions. Despite this, arrhythmias, subclinical
myocardial dysfunction and overt HF are common causes of
significant morbidity and mortality among the CHD and adult
CHD populations.254-256 STE plays a role in early detection,
quantification, and monitoring of ventricular dysfunction in various
pressure and volume loading congenital malformations.257 One of
the difficulties with interpreting strain measures in these scenarios is
the impact of loading conditions, whichmaymake their interpretation
more challenging. The following clinical advice is not intended to be a
comprehensive description of the role of STE with every type of
congenital heart defect but an effort to provide some guidance as
to the suggested clinical utility of STE in those conditions where the
evidence is more robust.
One of the main utilities of strain imaging in CHD is for the
quantitative assessment of RV function, such as in patients after te-
tralogy of Fallot (TOF) repair, in those with a systemic right
ventricle, and patients with PH. TOF repair often results in severe
pulmonary regurgitation leading to chronic RV volume loading.258

Monitoring RV function is clinically important. RV global,
segmental, and RVFWLS measurements can be used to quantify
RV function, and value as outcome predictors has been demon-
strated.259-263 Furthermore, in patients with repaired TOF,
decreased LVGLS, reflecting adverse ventricular-ventricular interac-
tions, has been associated with adverse outcomes.264 A recent sys-
tematic review and meta-analysis further supports the utility of LV
and RV strain as predictors of major adverse cardiovascular events
in CHD.265 Thus, serial monitoring of RVFWLS in combination
with LVGLS is advised.

Systemic RV physiology can be present after atrial switch for com-
plete transposition of the great arteries and congenitally corrected
transposition of the great arteries and in patients with hypoplastic
left heart syndrome undergoing Fontan palliation procedures.266

Systemic RVs are at high risk for developing RV dysfunction and
RV failure. There is evidence supporting the use of RV GLS for moni-
toring RV systemic function.267-269 For these conditions RV GLS is
the speckle-tracking echocardiographic parameter that should be
used over RV free wall strain given the importance of the septal
contribution to systemic cardiac output.270

PH associated with CHD can result in RV dysfunction and RV fail-
ure.271 There is increasing evidence that RV strain parameters in pa-
tients with PH secondary to CHD have prognostic
significance.272,273 Additionally, monitoring RV and LVGLS in pa-
tients with Eisenmenger syndrome and other causes of PH has
been suggested as contributory to outcome prediction.274

Furthermore, there has been some evidence to support the role of
an LVGLS less negative than �18% as a superior prognosticator over
purely LVEF in Ebstein’s anomaly patients for transplant-free survival
and reduced HF exacerbations.275

Speckle-tracking analysis of atrial function within the heterogenous
CHD cohort is an emerging area of interest. However, additional in-
vestigations are needed before any clinical advice can be made.



Figure 16 Assessment of LVMD with 2D STE. LVMD was calculated as the SD of the time of onset of the QRS complex on the elec-
trocardiogram to the peak LS in 17 segments of the left ventricle. The bull’s-eye plots with the regional time to peak LS and the
regional curves of time to peak LS from the apical four-chamber views are shown. The arrows indicate the time starting at the R
or Q wave of the electrocardiogram until the peak LS. The patient in (A) had an inferior MI and preserved LVEF and short LVMD,
whereas the patient in (B) had a larger inferior MI, resulting in lower LVEF and longer LVMD. ANT, Anterior; ANT_SEPT, anteroseptal;
CK, creatine kinase; INF, inferior; LAT, lateral; LVEF, LV EF; POST, posterior; RCA, right coronary artery; SEPT, septal; STEMI, ST-
elevation MI; WMSI, wall motion score index. Reproduced with permission from Abou et al.276

Key Points

� LVGLS has demonstrable prognostic value in some patients

with CHD.

� Currently, there is no accepted normative RV strain values for

systemic RV, post-TOF repair, or Ebstein’s anomaly patients.

Journal of the American Society of Echocardiography
Volume - Number -

Thomas et al 25
Clinical Consensus Statements

1. The clinical role of LVand RV strain assessment has not been established for
most congenital heart lesions.

2. RVFWLS can be used for quantifying RV function in patients after TOF
repair. Serial RV measurements can be used to monitor RV function.

3. RV GLS can be used in the follow-up of patients with systemic right ventri-
cles and in patients with PH secondary to CHD.

4. LA and RA strain measurements are emerging techniques in CHD with no
robust evidence to support their clinical utility at the current time.
I. Mechanical Dispersion

LV mechanical dispersion (LVMD) is a measure assessing the tempo-
ral heterogeneity of myocardial contraction and quantifies the varia-
tion in the timing of peak systolic LS across all segments of the left
ventricle during one cardiac cycle. It is calculated as the SD of the
time from peak of the R wave on the electrocardiogram to peak sys-
tolic LS in all LV myocardial segments (see Figure 16).276 LVMD has
been related to arrhythmic events and may be helpful in identifying
patients at increased risk, whomight benefit from defibrillator implan-
tation.277 As this parameter is calculated as an SD among all LV seg-
ments, LVMD lacks spatiotemporal information and is therefore not
optimal for predicting CRT response. Nevertheless, it can still be
used in CRT patients to identify those at higher risk for arrhythmic
events.278 Additionally, elevated LVMD has some demonstrable
value as a predictor of the need for pacemaker implantation for pa-
tients with severe AS undergoing TAVI.279

LVMD is associated with risk for ventricular arrhythmias and sud-
den cardiac death after AMI.280 LVMD remained significantly associ-
ated with the end point in subgroups with LVEFs <35% and $35%.
Further investigation has also supported the importance of assessing
LVMD for the prediction of all-cause mortality and sudden cardiac
death in patients with AMI.281

A comprehensive meta-analysis of patients with prior MI and those
with nonischemic cardiomyopathy by Kawakami et al.277 reaffirmed
the incremental risk for ventricular arrhythmic events (hazard ratio,
1.19 [95% CI, 1.09-1.29] for every 10-ms increase in LVMD).
Alternatively, increases in LVMD have been associated with the pres-
ence of coronary artery disease and in some selected populations all-
cause mortality.282,283

LVMD is elevated in patients with bundle branch blocks and con-
duction delay, but outcome prediction is not well established in these
conditions.284 Furthermore, there is significant variability in LVMD
across vendors, and the present consensus suggests that serial



Figure 17 Myocardial work by pressure-strain analysis. (A, B) Schematically how echocardiography and brachial artery cuff pressure
are used to obtain a noninvasive LV pressure (LVP) curve are shown. (C) LV PSLs from a normal subject and a patient with cardio-
myopathy. Global and segmental LV PSLs are displayed as well as segmental bull’s-eye plots. The patient with cardiomyopathy has
reduced area of the PSL, whichmeans reduced global LV work. (D)Myocardial work in a patient with HF and left bundle branch block
(LBBB) who is evaluated for CRT. The upper half illustrates work distribution. The small area of the septal PSL indicates that very little
work is done by the septum. Furthermore, during parts of systole the septum is stretched, which means negative work, as indicated
by counter-clockwise rotation of the loop. The lateral wall segments show compensatory hypercontraction and a large loop. The
lower half illustrates use of LV lateral wall–to–septal work difference to identify responders to CRT. For this calculation, it is sufficient
to measure in only a single plane, the apical four-chamber (4C), and use only the basal and mid segments in septum and lateral wall.
The work difference is calculated by using the average value from two segments. Reproduced with permission from Smiseth et al.296

2C, Two-chamber; 3C, three-chamber;Ant., anterior;AVC, aortic valve closure;AVO, aortic valve opening;MVC, mitral valve closure;
MVO, mitral valve opening; PLV, left ventricular pressure; Post., posterior.
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evaluations of LVMD should be performed using the same vendor
software to maintain consistency and accuracy.285,286 Normative
values of mechanical dispersion have been reported in predominantly
white populations with varying upper limits of normal across age
ranges.284,287 Generally, younger patients had lower LVMD, with
LVMD increasing incrementally with age.287

Although mechanical dispersion can be measured in the right
ventricle and left atrium, their clinical utility is not advised at this stage
as further research is still required.

Clinical Consensus Statements
1. Elevated LVMD after MI has been associated with ventricular arrhythmias

and adverse outcome.
2. Elevated LVMD is not suited for detecting dyssynchrony amendable by

CRT but may be helpful in assessing the need for defibrillator therapy after
MI and in other cardiomyopathies.
3. When monitoring LVMD changes across a patient’s studies, a single vendor
should be used to avoid significant intervendor variability.

4. Mechanical dispersion of other chambers is not endorsed for clinical utility,
as further evidence is required for these values.
5. FUTURE DIRECTIONS

A. Three-Dimensional Strain

The accuracy of 3D speckle-tracking analysis mainly relies on the im-
age quality and temporal/spatial resolution of 3D echocardiographic
(3DE) data sets. Although one-beat acquisition of 3DE full-volume
data sets is possible, further technological advancements will be
required to obtain high temporal and spatial resolutions.288 Volume
rates of 30 to 50 Hz are likely needed.
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In addition to the measurement variability of 3DE strain with the
use of different ultrasound vendors’ machines and software initializa-
tion of an ROI on the myocardial border is a potential source of
observer variabilities for 3DE strain measurements. Similar to auto-
mated 2D strain analysis, fully automated 3DE strain software, has
the capability for automatic determination of myocardial borders
and 3DE speckle-tracking analysis, which may overcome some of
these variability problems.

Myocardial curvature analysis and LV shape analysis are potential
fields of research because it may provide prognostic information,289

but at the present time, there is insufficient basis for clinical use.
Three-dimensional echocardiography has a potential advantage over

2Dechocardiography for the assessment of irregularly shaped chambers,
such as the right ventricle. Prognostic value of 3DE derived RVEF by 3D
software aimed for the right ventricle has been demonstrated.290,291

However, 3D RV strain is currently measured only by some soft-
ware,292,293 and the incremental value of 3D RV strain over RVEF for
outcome prediction has not been demonstrated extensively.294

Clinical Consensus Statements
1. Three-dimensional strain analysis is not currently advised for routine use,

because of lower spatial and temporal resolutions. Fully automated 3D
strain software may allow clinical adoption of this technique into routine
practice in the future.
B. Multilayer Strain

Multilayer strain analysis theoretically has the potential for detecting
early stages of LV dysfunction. Nevertheless, a report from the
EACVI-ASE Strain Standardization Task Force concluded there is no
technical argument in favor of a certain myocardial layer for global LV
functional assessment because of significant bias among different ultra-
sound vendors and interdependence of layer-specific GLS measure-
ments.19,22 Furthermore, it could not demonstrate differential LS
changes in myocardial layers in normal vs infarcted myocardium, inde-
pendent fromof the typeof software (full-wall tracking/tracking isolated
layers).15,19 Given the thin walls of the chambers and the limited lateral
resolution of echocardiographic imaging, layer-specific assessment of
the right ventricle, left atrium, and right atrium is not feasible.

Clinical Consensus Statements
1. Superiority of layer-specific strain over full-thickness strain has not been

demonstrated and thus cannot be endorsed for clinical utility at the current
time.

2. Layer-specific strain analysis is not endorsed for the right ventricle, left
atrium, or right atrium.

C. Myocardial Work

Pressure-strain loops (PSLs) have been suggested to account for the ef-
fects of afterload conditions on myocardial deformation.295 The
method provides measures of LV performance by both, generating
PSLs and derived myocardial work indices (see Figure 17).296

Segmental myocardial work indices correlate with myocardial meta-
bolism as assessed by 18F-fluorodeoxyglucose positron emission tomog-
raphy.295,297Wasted work, constructive work, and work efficiency can
be distinguished.298 PSL analyses have shown promise in the detection
of myocardial dysfunction in ischemia, AS, AR, and cardiomyopa-
thies299-302; determining responses to CRT; and differentiating
hypertensivemyopathy.298,303Moreover, normal ranges ofmyocardial
work indices have beenpublished.304Currently, however, there is still a
lackof convincing prognostic outcomesaswell as a significant overlapof
abnormal work indices with previously published normal ranges. There
is also no clear standardization, and outputs may vary significantly de-
pending on determined valve timings.305

Finally, some interest has been directed at the off-label application
of PSL analysis to the right ventricle to estimate RVmyocardial work.
Significant differences in PH and HF cohorts have been demon-
strated, with some suggestions of prognostic value. However, the con-
sequences of using proprietary LV PSL algorithms to evaluate RV
geometry and pressures are not well established.215,306,307

Clinical Consensus Statements
1. Noninvasive echocardiography derived myocardial work indices are not

advised for routine clinical use, because of a lack of evidence for standard-
ization and reliable cutoff values in the presence of pathology.

2. In select cases where blood pressure is significantly altered, myocardial
work indices may be appropriate as an alternative measure to GLS.

3. RV myocardial work cannot be advised for clinical application at this time.
4. Continued research is encouraged to establish standardization and clinical

application of myocardial work indices.

D. Artificial Intelligence and Deep Learning

The application of artificial intelligence (AI) algorithms to strain analysis
is undergoing rigorous investigation through various approaches.
Regardless, all AI algorithms require clearance by the regulatory author-
ities.

Several commercial packages have now been cleared by the regula-
tory authorities for clinical use.308 Proprietary algorithms have been
developed for novice guidance acquiring echocardiographic images
which may aid in expanding access and skillsets to underserved areas
for the future performance of strain imaging.309 Outcomes of an AI
quantification of strain comparedwithmanual strain using an algorithm
that can automate more than 60 standardized measurements from an
echocardiogram,310 found correlation ranged from 0.76 to 0.84 with
root mean square error ranging from 2.6% to 2.8%. Identification of
wallmotionabnormalities from the suspectedMI cohort hadareaunder
the receiver operating characteristic curves averaging 0.80 (range, 0.69-
0.90; see Supplemental Table 12).310 More recently, deep learning
pipeline algorithms have demonstrated good interreader variability
compared with human operators, with a large British collaborative
recently demonstrating that their Unity-GLS neural network had a bet-
ter correlation with expert consensus GLS ratings (r = 0.91) compared
with individual expert readings (r = 0.85).311,312

In the latest round of the intervendor strain trials, several commer-
cial AI algorithms will undergo comparison testing. Demonstrating
agreement across all approaches to strain will be critical to acceptance
of AI estimates clinically. Currently, it is evident that rapid advance-
ments in AI algorithms in the near future are promising for the com-
plete automation of clinically relevant strain measurements.
Clinical Consensus Statements
1. AI-guided strain measurements may be used clinically, but only after

demonstrating agreement with existing algorithms and obtaining regulatory
approval. Such algorithms may improve reproducibility and are likely to
progress dramatically in coming years.
NOTICE AND DISCLAIMER

This report is made available by EACVI and ASE as a courtesy refer-
ence source for members. This report contains recommendations
only and should not be used as the sole basis tomakemedical practice
decisions or for disciplinary action against any employee. The
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statements and recommendations contained in this report are primar-
ily based on the opinions of experts, rather than on scientifically veri-
fied data. EACVI and ASE make no express or implied warranties
regarding the completeness or accuracy of the information in this
report, including the warranty of merchantability or fitness for a
particular purpose. In no event shall EACVI and ASE be liable to
you, your patients, or any other third parties for any decision made
or action taken by you or such other parties in reliance on this infor-
mation. Nor does your use of this information constitute the offering
of medical advice by EACVI and ASE or create any physician–patient
relationship between EACVI/ASE and your patients or anyone else.
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